Проводящая ткань элементами которой являются - Домашний мастер Dach-Master.ru
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проводящая ткань элементами которой являются

Ботаника

17. Характеристика проводящих тканей: структура, функции, расположение, образование, эволюция элементов ксилемы

Проводящие ткани выполняют функцию транспортировки по растению питательных веществ. Они образуют в теле растения непрерывную разветв­ленную систему, соединяющую все его органы. Ткань, по которой передви­гаются вода и растворенные в ней минеральные вещества, называется ксилемой. Транспорт продуктов ассимиляции осуществляет второй тип проводящей ткани — флоэма.

Ксилема так же, как и флоэма, является сложной тканью и включает три типа клеток:

  • трахеальные элементы,
  • механические волокна,
  • клетки паренхимы.

Трахеальные элементы (трахеиды, сосуды) — это мертвые клетки вытянутой формы с неравномерно утолщенными лигнифицированными оболочками, пронизанными порами. Одревеснение оболочек происходило постепенно и способствовало укреплению стенок водопроводящих элементов. У примитивных организмов на тонкостенных оболочках сначала появлялись кольчатые, затем спиральные утолщения и возникали кольчатые и спиральные трахеальные элементы.

В процессе эволюции одревеснение распространилось почти на всю оболочку, но в ней сохранились тонкостенные участки (поры), имеющие округлую или продолговатую форму. Так возникли точечные и лестничные трахеальные элементы, являющиеся разновидностями порового типа утолщения. Трахеиды являются основными водопроводящими элементами плаунов, хвощей, папоротников, голосеменных растений. Первичная клеточная оболочка на клеточных оболочках у них не нарушена; поэтому передвижение воды осуществляется путем фильтрации через поры.

Сосуды характерны для покрытосеменных растений. Членики сосудов располагаются один под другим, образуя длинную полую трубку. Основное отличие сосудов от трахеид состоит в том, что их поперечная перегородка имеет сквозные отверстия (перфорации), вследствие чего значительно уве­личивается скорость передвижения воды.

Членики сосудов возникают из живых клеток, которые имеют тонкие оболочки и растут в длину и ширину. Затем начинает откладываться вторичная оболочка (не откладывается в местах образования пор и перфораций. Поперечные стенки члеников сосудов в местах перфораций растворяются, начинается проведение воды).

Сосуды являются важнейшим эволюционным приобретением растений. Они начали появляться в независимых эволюционных группах (у селягинеллы, орляка, эфедры) и окончательно закрепились у покрытосеменных, явившись важным фактором их процветания и приспособления к сухопутным условиям. Скорость передвижения воды по сосудам у некоторых высоких деревьев может достигать 8 м/ч (в среднем — 1 м/ч).

Древесные волокна (волокна либриформа) выполняют опорную и защитную функции для трахеальных элементов и паренхимы. Они эволюционно возникли из трахеид, их преобразование шло в направлении потери проводящей функции, преобразования окаймленных пор в простые и повы­шения механической прочности.

Древесинная паренхима часто окружает трахеальные элементы. Она ре­гулирует поступление и скорость движения растворов и запасает питательные вещества. Собранные в горизонтальные полосы участки паренхимных клеток образуют так называемые древесные лучи, передающие растворы в радиальном направлении. Рассеянная среди трахеальных элементов парен­хима, в виде вертикальных тяжей тянущаяся вдоль осевых органов, называется древесиной или тяжевой. Клетки паренхимы могут образовывать выросты в полость сосудов — тиллы. Тиллообразование усиливает механическую прочность центральной части стволов деревьев.

По происхождению и заложению различают первичную и вторичную ксилемы. Первичная возникает из прокамбия. В ней выделяют:

  • протоксилему,
  • метаксилему (появляющуюся позже).

Первичная часто состоит из трахеальных элементов примитивного строения (с кольчатым, спиральным утолще­нием клеточных оболочек). Вторичная образуется из камбия и называется древесиной.

Формирование элементов в первичной ксилеме из прокамбия может идти тремя путями:

1.центростремительно (первые элементы протоксилемы образуются на периферии, а метаксилема — в центре). Этот тип образования первичной кси­лемы называется экзархным;

2.центробежно (вычленение клеток ксилемы из прокамбия идет от центра к периферии). В этом случае выделяют две его модификации:

  • центрархный тип (прокамбий расположен в виде одного пучка в центре и откладывает проводящие элементы наружу);
  • эндархный (прокамбий расположен в виде колечка).

3.мезархный (первые элементы ксилемы закладываются в центральной части прокамбиального тяжа, а последующее появление других элементов идет и к центру, и к периферии).

Проводящие ткани

Состав проводящих тканей. Проводящие элементы флоэмы и ксилемы на продольном срезе стебля тыквы обыкновенной. Трахеиды стебля сосны обыкновенной. Проводящие пучки стебля растений (кукурузы обыкновенной, подсолнечника однолетнего, тыквы обыкновенной).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Проводящие элементы флоэмы и ксилемы на продольном срезе стебля тыквы обыкновенной (Cucurbita pepo L.)

2. Трахеиды стебля сосны обыкновенной (Pinus sylvestris L.)

3. Проводящие пучки стебля кукурузы обыкновенной (Zea mays L.), подсолнечника однолетнего (Helianthus annuus L.) (или кирказона обыкновенного (Aristolochia clematitis L.)), тыквы обыкновенной (Cucurbita pepo L.)

Основные понятия по теме


Ксилема служит для передвижения воды и минеральных веществ ко всем органам растения («восходящий ток»). Она состоит из сосудов, трахеид, древесинной паренхимы и либриформа (древесинные волокна).


Трахеиды — мертвые прозенхимные клетки с утолщенными одревесневшими оболочками, несущими поры, часто окаймленные. Фильтрация растворов из одной трахеиды в другую происходит через эти поры. Сосуды, или трахеи, состоят из многих клеток, которые называются члениками сосуда. Поперечные перегородки между члениками растворяются и возникают перфорации (сквозные отверстия). По таким полым трубкам растворы передвигаются значительно легче, чем по трахеидам. По характеру утолщений клеточных стенок члеников сосудов различают спиральные, кольчатые, лестничные, сетчатые, точечные сосуды.


У многих растений с возрастом сосуды закупориваются тиллами — паренхимными клетками, которые проникают в сосуд через поры в стенках, разрастаются и закупоривают его, делают непроходимым (тиллы развиваются в сосудах дуба, акации, ясеня).


Паренхимные клетки рассеяны по всей ксилеме или примыкают к сосудам, образуя обкладку. Клетки древесинной паренхимы несколько вытянуты по оси органа, оболочки их слегка утолщаются, могут одревесневать. Либриформ — мертвые клетки с одревесневшими оболочками, создающие опору и защиту трахеальным и паренхимным элементам ксилемы.


По флоэме органические вещества, синтезирующиеся в листьях, движутся ко всем органам растения («нисходящий ток»). Она состоит из ситовидных трубок, клеток-спутниц, лубяной паренхимы и лубяных волокон.


Проводящими элементами являются ситовидные трубки, представляющие собой вертикальный ряд живых клеток (члеников). Их поперечные стенки пронизаны перфорациями (ситовидные пластинки). Стенка членика целлюлозная, ядра в зрелом состоянии нет. Рядом с ситовидной трубкой обычно расположена одна или несколько сопровождающих клеток (клеток-спутниц). Они связаны с ситовидными элементами плазмодесмами и обеспечивают регуляцию передвижения веществ по флоэме.


Лубяное волокно морфологически сходно с древесинным. Паренхима во флоэме располагается рассеяно и вместе с ситовидными трубками составляет мягкий луб, участки лубяного волокна — твердый луб.


Тяжи ксилемы и флоэмы объединяются в проводящие или сосудисто-волокнистые пучки. По структуре проводящие пучки могут быть полными и неполными (состоят только из элементов флоэмы или ксилемы), открытыми (между проводящими тканями располагается камбий, в результате чего пучок приобретает способность к вторичному утолщению) и закрытыми (прокамбий полностью дифференцируется и превращается в первичные проводящие ткани — у однодольных). В зависимости от взаимного расположения флоэмы и ксилемы различают пучки нескольких типов:


коллатеральные флоэма располагается кнаружи, а ксилема — к центру органа. Коллатеральные пучки характерны для большинства однодольных и двудольных растений;


биколлатеральные — в таком пучке различают два участка флоэмы — наружный и внутренний. Эти пучки можно видеть в стеблях растений из семейства тыквенных, пасленовых, колокольчиковых, астровых.


концентрические — ксилема замкнутым кольцом окружает флоэму (амфивазальные пучки — у однодольных), либо наоборот, — флоэма окружает ксилему (амфикрибральные — у папоротников).


радиальные участки флоэмы и ксилемы лежат по разным радиусам и не соприкасаются, их разделяют участки паренхимы. Встречаются в корнях однодольных и двудольных растений.


Практическое занятие


Материалы и оборудование: постоянные микропрепараты: продольные срезы стебля тыквы, радиальные и тангенциальные срезы стебля сосны, поперечные срезы стебля кукурузы обыкновенной, кирказона обыкновенного (или подсолнечника однолетнего), тыквы обыкновенной. Практикумы по анатомии и морфологии растений, таблицы.


Работа 1. Проводящие элементы флоэмы и ксилемы на продольном срезе стебля тыквы обыкновенной (Cucurbita pepo L.)


2. Зарисовать при большом увеличении микроскопа ситовидную трубку с ситовидными пластинками, сосуды с кольчатыми и спиральными утолщениями стенок и сосуды с разными типами поровости (рисунок 7.1). Отметить на рисунке все части проводящих элементов.

проводящая ткань флоэма ксилема

Рисунок 1 — Проводящие ткани тыквы (Cucurbita pepo): 1 — ситовидные трубки, 2 — клетки-спутницы, 3 — ситовидная пластинка, 4 — камбий, 5 — сетчато-пористый сосуд, 6 — пористый сосуд, 7 — сетчатый сосуд, 8 — спиральный сосуд, 9 — кольчатый сосуд (из Г.А. Бавтуто, Л.М. Ерей, 2002)

Работа 2. Трахеиды стебля сосны обыкновенной (Pinus sylvestris L.)


2. Сравнить изученный препарат с изображением на рисунке 7.2; зарисовать 2-3 трахеиды в месте их соединения, отметив их скошенные концы, окаймленные поры, торус (утолщение на срединной пластинке напротив отверстия во вторичной оболочке).


Рисунок 2 — Трахеиды стебля сосны (Pinus sylvestris): А — радиальный срез; Б — тангенциальный срез; 1 — окаймленные поры, 2 — оболочка трахеиды, 3 — скошенные концы трахеид, 4 — торус (из Г.А. Бавтуто, Л.М. Ерей, 2002)


Работа 3. Проводящие пучки стебля кукурузы обыкновенной (Zea mays L.), подсолнечника однолетнего (Helianthus annuus L.) (или кирказона обыкновенного (Aristolochia clematitis L.)), тыквы обыкновенной (Cucurbita pepo L.)


2. Выяснить: а) взаимное расположение ксилемы и флоэмы (тип пучка); б) какие элементы входят в состав пучков; в) наличие камбия (открытый — закрытый; г) тип обкладки пучка (паренхимная. склеренхимная).


3. Сравнить данные, полученные на основании проведенного анализа с изображениями на рисунках 7.3, 7.4, 7.5.


4. Зарисовать: а) закрытый коллатеральный проводящий пучок кукурузы обыкновенной; б) открытый коллатеральный проводящий пучок подсолнечника (или кирказона обыкновенного); в) биколлатеральный проводящий пучок тыквы обыкновенной. Отметить: основную паренхиму, ксилему, флоэму, склеренхиму, камбий.


Рисунок 3 — Коллатеральный закрытый сосудисто-волокнистый проводящий пучок стебля кукурузы (Zea mays) в поперечном разрезе: 1 — основная паренхима, 2 — склеренхима, 3 — протофлоэма, 4 — метафлоэма, 5 — древесная паренхима, 6 — пористые сосуды, 7 — спиральный сосуд, 8 — кольчатый сосуд, 9 — воздушная полость (из Н.С. Киселева, Н.В. Шелухин, 1969)


Рисунок 4 — Коллатеральный открытый сосудисто-волокнистый проводящий пучок стебля подсолнечника (Helianthus annuus) в поперечном разрезе: 1 — основная паренхима, 2 — склеренхима, 3 — флоэма, 4 — камбий, 5 — вторичная ксилема, 6 — первичная ксилема, 7 — перимедулярные волокна (из Н.С. Киселева, Н.В. Шелухин, 1969)


Рисунок 7.5 — Биколлатеральный сосудисто-волокнистый проводящий пучок стебля тыквы (Cucurbita pepo) в поперечном разрезе: 1 — основная паренхима, 2 — наружная флоэма, 3 — камбий, 4 — вторичная ксилема, 5 — первичная ксилема, 6 — внутренняя флоэма (из Н.С. Киселева, Н.В. Шелухин, 1969)


Вопросы для самоконтроля


2. Какие гистологические элементы входят в состав ксилемы и какова их функция?


3. По каким признакам можно классифицировать сосудисто-волокнистые проводящие пучки?


4. Какие типы проводящих пучков характерны для стеблей однодольных и двудольных растений?


Литература

1. Бавтуто, Г.А. Ботаника. Морфология и анатомия растений / Г.А. Бавтуто, В.М. Еремин — Мн.: Высшая школа, 1997. — С.301 — 307.

2. Бавтуто, Г.А. Практикум по анатомии и морфологии растений: учеб. пособие / Г.А. Бавтуто, Л.М. Ерей. — Мн.: Новое знание, 2002. — С.107 — 121.

3. Ботаника: Морфология и анатомия растений: учеб. пособие для студентов пед. ин-тов по биолог. и хим. спец. / А.Е. Васильев [и др]; — 2-е изд., перераб. — М.: Просвещение, 1988. — C.123 — 129.

4. Киселева, Н.С. Атлас по анатомии растений / Н.С. Киселева, Н.В. Шелухин; под ред. С.В. Калишевича. — Мн.: Вышэйш. школа, 1969. — С.102 — 129.

Размещено на Allbest.ru

Подобные документы

Ткани высших растений (покровные, проводящие, механические, основные, выделительные). Строение растения и функции его органов: корня, стебля, листа, побега и цветка. Разновидности корневых систем. Роль цветка как особой морфологической структуры.

презентация [8,1 M], добавлен 28.04.2014

Почка как зачаточный побег. Первичное строение стебля. Строение апекса побега. Функции стебля: опорная и проводящая. Древесина голосеменных и покрытосеменных. Закладка и работа камбия. Схема строения стебля кирказана. Гистологические элементы древесины.

презентация [8,6 M], добавлен 12.02.2015

Морфологические параметры белки обыкновенной. Распространение и кормовая база белки обыкновенной в Свободненском районе Амурской области. Защитно-гнездовые свойства охотничьих угодий Свободненского района для белки обыкновенной. Методы учета численности.

дипломная работа [95,4 K], добавлен 21.11.2009

Природно-климатические условия Национального парка «Бузулукский бор». Организация, характеристика и состояние лесного фонда. История создания географических культур сосны обыкновенной. Различия в реакции климатипов на изменения метеорологических факторов.

дипломная работа [1007,4 K], добавлен 13.06.2014

Стебель — удлинённый побег высших растений, служащий механической осью, выполняющий роль производящей и опорной базы для листьев, почек, цветков. Определение строения древесного стебля расположением проводящих пучков. Изучение основ стелярной теории.

презентация [8,6 M], добавлен 30.01.2015

Общая характеристика голосеменных — группы семенных растений, занимающей промежуточное положение между папоротниками и цветковыми растениями. Строение сосны обыкновенной и ее шишек. Сравнение признаков сосны и ели. Особенности можжевельника и лиственницы.

презентация [1,5 M], добавлен 26.03.2012

Морфология растений: их жизненные формы; органы. Характеристика основных групп растительных тканей. Сроение образовательных тканей, латеральных меристем. Основные виды проводящих тканей флоэмы, ксилемы. Виды покровных, основных, выделительных тканей.

презентация [14,0 M], добавлен 15.04.2011

Размножение обыкновенной щуки. Систематическое положение и географическое положение. Морфологические признаки, экология обитания, питание, хозяйственное значение. Развитие личинок и мальков. Характеристика зрелости половых продуктов. Темпы весового роста.

курсовая работа [3,9 M], добавлен 18.07.2014

Особенности внешнего вида, образа жизни большой синицы и обыкновенной лазоревки, их сравнительная характеристика. Биология птиц: внешний вид, пение, ареал, размножение, питание, систематика и подвиды. Распространение в лесах Волжско-Окского междуречья.

курсовая работа [1009,6 K], добавлен 26.06.2014

Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.

презентация [15,3 M], добавлен 27.03.2016

Ткани растений

Содержание

  1. Образовательные ткани (меристемы)
  2. Покровные ткани
  3. Основные ткани (паренхима)
  4. Проводящие ткани
  5. Механические ткани
  6. Выделительные ткани
  7. Что мы узнали?

Бонус

  • Тест по теме

Образовательные ткани (меристемы)

Располагаются в зонах роста:

  • на верхушках побегов;
  • на кончиках корней;
  • вдоль стеблей и корней (камбий или боковая меристема, обеспечивает рост стеблей и корней в толщину).

Клетки меристем активно делятся и даже не успевают вырасти, они как бы всегда молодые, и потому не имеют вакуолей, стенки их тонкие, ядро крупное.

Поразительна активность верхушечной меристемы бамбука. Он растёт буквально на глазах, каждый час на 2 – 3 см!

Покровные ткани

Известно, как быстро высыхают плоды со снятой кожурой, или как легко заражается гнилью плод с нарушенной кожицей. Именно барьер покровных тканей обеспечивает сохранность мягких частей растения.

Существует три вида покровных тканей:

  • эпидерма;
  • перидерма;
  • корка.

Эпидерма (кожица) – поверхностные живые клетки различных органов. Защищает нижележащие ткани и регулирует газообмен и испарение воды растением.

Рис. 1. Клетки эпидермы под микроскопом.

Перидерма образуется у древесных растений, когда зелёный цвет побега переходит в бурый. Перидерма состоит из пробковых клеток, которые защищают побег от мороза, микробов и потерь влаги.

Корка – мёртвая ткань. Она не может растягиваться, следуя за утолщением ствола, и трескается.

Основные ткани (паренхима)

Существует три вида паренхимы:

  • фотосинтезирующая (ассимиляционная);
  • аэренхима, обеспечивает проведение воздуха внутрь растения через межклеточное пространство;
  • запасающая.

Рис. 2. Паренхима зелёного листа под микроскопом.

Проводящие ткани

Обеспечивают перемещение веществ в растительном организме. Движение осуществляется в двух основных направлениях:

  • восходящий ток, осуществляемый ксилемой;
  • нисходящий ток, осуществляемый флоэмой.

Ксилема и флоэма образуют непрерывную, похожую на водопровод, систему.

Рис. 3. Схема строения флоэмы и ксилемы.

Сосуды флоэмы составлены из ситовидных элементов, или трубок, – вытянутых клеток, поперечные грани которых похожи на сито. Ток веществ идёт через поры сита из одной клетки в другую. Клетки в сосуде как бы поставлены одна на одну.

Проводящие элементы ксилемы тоже представлены вытянутыми клетками, но поры у них расположены также и на боковых стенках клеток.

Механические ткани

Обеспечивают защиту и устойчивость растения или отдельных его частей (косточки плодов). Оболочки клеток утолщены.

Виды механической ткани:

  • колленхима(живые клетки);
  • склеренхима(мёртвые клетки).

Колленхима расположена в растущих листьях и стебле, она не препятствует их росту. Содержит клетки вытянутой формы. После прекращения роста данного участка растения колленхима постепенно превращается в склеренхиму – становится жёстче, оболочки одревесневают и толстеют.

Одревеснение повышает хрупкость склеренхимы. Льняное волокно является исключением из правила, это не одревесневшая склеренхима. Поэтому из льна получается такая мягкая ткань как батист.

Выделительные ткани

Это ткани, выделяющие из растения воду или какой-либо секрет (эфирное масло, нектар, смолу, соли и т. д.). К этому типу тканей относятся и такие, секрет которых остаётся внутри растения. Это, например, млечники, которые содержат в вакуолях млечный сок (чистотел, одуванчик).

Их основная функция – выведение ненужных веществ и защита. Так, смола в древесине хвойных защищает её от гниения.

С помощью таблицы «Ткани растений» кратко обобщим сказанное:

Ткани

Функции

Особенности строения клеток

Проводящая ткань элементами которой являются

Первоначально ксилема образуется из первичной меристемы — прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.

Для корня характерен экзархный тип закладки ксилемы, для стеблей — эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

У некоторы? растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий). Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм , приспособленных к сезонным изменениям климата, — периодически.

Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку. Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено. У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки. Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. В связи с этим после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой (метаксилемой). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое.Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются , а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд. Большинство покрытосеменных растений и некоторы? папоротникообразных обладают сосудами.

Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам. Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.

Чаще всего встречаются окаймлённые поры. У них канал, обращённый в полость клетки, образует расширение — камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение — торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.

Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, в связи с этим такую пористость называют лестничной). Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.

С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений. Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними. Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.

В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у кото?ы? они имеются наряду с трахеидами. Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.

Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа (лат. liber — луб, forma — форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки. Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.

В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины. Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей — это тяжевая паренхима. В другом случае паренхима образует горизонтальные лучи. Они называютсясердцевинными лучами, так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.

Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками. Основные клетки проводящие, называются ситовидными элементами . Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт. По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений. А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.

Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.

У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных он представлены ситовидными клетками. Ситовидные поля в клетках рассеяны по боковым стенкам. В протопласте сохраняется несколько деструктированное ядро.

У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки. В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница, образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки (рис.38). Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.

Структура зрелых ситовидных клеток имеет некоторые особенности. Отсутствует вакуоль, в связи с этим цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.

Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которы? откладывается полисахарид каллоза. Поры располагаются группами, образуя ситовидные поля. У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку. Если на ней находится одно ситовидное поле, её называют простой, если несколько — сложной.

Скорость передвижения растворов по ситовидным элементам составляет до 150см в час. Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.

Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они имеются, то ситовидные элементы работают в течение всей жизни растения.

Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

Проводящие ткани растений

Рис.Клеточное строение однолетнего стебля липы. Продольный и поперечный срезы: 1 — система покровных тканей (снаружи внутрь; один слой эпидермиса, пробка, первичная кора); 2-5 — луб: 2 — лубяные волокна, 3 — ситовидные трубки, 4 — клетки-спутники, 5 — клетки лубяной паренхимы; 6 — клетки камбия, в крайних слоях растянутые, дифференцирующиеся; 7-9 клеточные элементы древесины: 7— клетки сосудов, 8— древесные волокна, 9 — клетки древесной паренхимы (7, 8 и 9 показаны также крупно); 10— клетки сердцевины.

Вода и минеральные вещества, поступающие через корень, должны достигать всех частей растения, в то же время вещества, образующиеся в листьях в процессе фотосинтеза, также предназначены для всех клеток. Таким образом, в теле растения должна существовать специальная система, обеспечивающая транспорт и перераспределение всех веществ. Эту функцию у растений выполняют проводящие ткани. Существует два типа проводящих тканей: ксилема (древесина) и флоэма (луб). По ксилеме осуществляется восходящий ток: передвижение воды с минеральными солями из корня во все органы растения. По флоэме идет нисходящий ток: транспорт органических веществ, поступающих из листьев. Проводящие ткани являются сложными тканями, так как состоят из нескольких типов по-разному дифференцированных клеток.

Ксилема (древесина).Ксилема состоит из проводящих элементов: сосудов, или трахей, и трахеид, а также из клеток, выполняющих механическую и запасающую функцию.

Трахеиды. Это мертвые вытянутые клетки с косо срезанными заостренными концами (рис.12).

Их одревесневшие стенки сильно утолщены. Обычно длина трахеид составляет 1—4 мм. Располагаясь в цепочку друг за другом, трахеиды образуют водопроводящую систему у папоротникообразных и голосеменных растений. Связь между соседними трахеидами осуществляется через поры. Путем фильтрации сквозь мембрану поры осуществляется и верти­кальный, и горизонтальный транспорт воды с растворенными минеральными веществами. Движение воды по трахеидам идет с медленной скоростью.

Сосуды (трахеи). Сосуды образуют наиболее совершенную проводящую систему, характерную для покрытосеменных растений. Они представляют собой длинную полую трубку, состоящую из цепочки мертвых клеток — члеников сосуда, в поперечных стенках которых находятся крупные отверстия — перфорации. Благодаря этим отверстиям осуществляется быстрый ток воды. Сосуды редко бывают одиночными, обычно они располагаются группами. Диаметр сосуда — 0,1 — 0,2 мм. На ранней стадии развития из прокамбия ксилемы на внутренних стенках сосудов образуются целлюлозные, впоследствии одревесневающие, утолщения. Эти утолщения препятствуют сминанию сосудов под давлением соседних растущих клеток. Сначала образуются кольчатые и спиральные утолщения, которые не препятствуют дальнейшему удлинению клеток. Позже возникают более широкие сосуды с лестничными утолщениями, а затем пористые сосуды, для которых характерна наибольшая площадь утолщения (рис.13).

Через неутолщенные участки сосудов (поры) осуществляется горизонтальный транспорт воды в соседние сосуды и клетки паренхимы. Появление сосудов в процессе эволюции обеспечило покрытосеменным растениям высокую приспособленность к жизни на суше и, как результат, их господство в современном растительном покрове Земли.

Другие элементы ксилемы. В состав ксилемы кроме проводящих элементов входят также древесинная паренхима и механические элементы — древесинные волокна, или либриформ. Волокна, так же как и сосуды, возникли в процессе эволюции из трахеид. Однако в отличие от сосудов у волокон уменьшилось число пор и сформировалась еще более утолщенная вторичная оболочка.

Флоэма (луб).Флоэма осуществляет нисходящий ток органических веществ — продуктов фотосинтеза. В состав флоэмы входят ситовидные трубки, клетки-спутницы, механические (лубяные) волокна и лубяная паренхима.

Ситовидные трубки. В отличие от проводящих элементов ксилемы, ситовидные трубки представляют собой цепочку живых клеток (рис.14).

Поперечные стенки двух смежных клеток, входящих в состав ситовидной трубки, пронизаны большим числом сквозных отверстий, образующих структуру, напоминающую сито. С этим и связано название ситовидных трубок. Стенки, несущие эти отверстия, называют ситовидными пластинками. Через эти отверстия и осуществляется транспорт органических веществ из одного членика в другой.

Членики ситовидной трубки соединены своеобразными порами с клетками-спутницами (см. ниже). С паренхимными клетками трубки сообщаются через простые поры. В зрелых ситовидных клетках отсутствуют ядро, рибосомы и комплекс Гольджи, а их функциональная активность и жизнедеятельность поддерживается клетками-спутницами.

Клетки-спутницы (сопровождающие клетки). Располагаются вдоль продольных стенок членика ситовидной трубки. Клетки-спутницы и членики ситовидных трубок образуются из общих материнских клеток. Материнская клетка делится продольной перегородкой, и из двух образовавшихся клеток одна превращается в членик ситовидной трубки, а из другой развиваются одна или несколько клеток-спутниц. Клетки-спутницы имеют ядро, цитоплазму с многочисленными митохондриями, в них происходит активный обмен веществ, что связано с их функцией: обеспечивать жизнедеятельность безъядерных ситовидных клеток.

Другие элементы флоэмы. В состав флоэмы наряду с проводящими элементами входят механические лубяные (флоэмные) волокна и лубяная (флоэмная) паренхима.

Проводящие пучки.В растении проводящие ткани (ксилема и флоэма) образуют особые структуры — проводящие пучки. Если пучки частично или полностью окружены тяжами механической ткани, их называют сосудисто-волокнистыми пучками. Эти пучки пронизывают все тело растения, образуя единую проводящую систему.

Первоначально проводящие ткани образуются из клеток первичной меристемы — прокамбия. Если при образовании пучка прокамбий полностью расходуется на формирование первичных проводящих тканей, то такой пучок называют закрытым (рис.15).

Он не способен к дальнейшему (вторичному) утолщению, потому что в нем нет камбиальных клеток. Такие пучки характерны для однодольных растений.

У двудольных и голосеменных растений между первичными ксилемой и флоэмой остается часть прокамбия, которая в дальнейшем становится пучковым камбием. Его клетки способны делиться, образуя новые проводящие и механические элементы, что обеспечивает вторичное утолщение пучка и, как следствие, рост стебля в толщину. Проводящий пучок, содержащий камбий, называют открытым (см. рис.15).

В зависимости от взаимного расположения ксилемы и флоэмы различают несколько типов проводящих пучков (рис.16)

Коллатеральные пучки. Ксилема и флоэма примыкают друг к другу бок о бок. Такие пучки характерны для стеблей и листьев большинства современных семенных растений. Обыч­но в таких пучках ксилема занимает положение ближе к центру осевого органа, а флоэма обращена к периферии.

Биколлатералъные пучки. К ксилеме примыкают бок о бок два тяжа флоэмы: один — с внутренней стороны, другой — с периферии. Периферический тяж флоэмы преимущественно состоит из вторичной флоэмы, внутренний — из первичной, так как развивается из прокамбия.

Концентрические пучки. Одна проводящая ткань окружает другую проводящую ткань: ксилема — флоэму или флоэма — ксилему.

Радиальные пучки. Характерны для корней растений. Ксилема располагается по радиусам органа, между которыми находятся тяжи флоэмы.

голоса
Рейтинг статьи
Читать еще:  Можно ли разводить клей пва
Ссылка на основную публикацию
ВсеИнструменты