Проводящая и образовательная ткани - Домашний мастер Dach-Master.ru
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проводящая и образовательная ткани

Лекция №4. ТКАНИ РАСТЕНИЙ: ПРОВОДЯЩИЕ, МЕХАНИЧЕСКИЕ, ВЫДЕЛИТЕЛЬНЫЕ, СОСУДИСТО-ВОЛОКНИСТЫЕ ПУЧКИ;

Проводящие ткани.Вода и питательные вещества, поступающие через корни, передвигаются к другим органам и клеткам и образуют восходящий ток, который идет по трахеидам и сосудам (трахеям).

Продукты ассимиляции от листьев (стеблей) передвигаются к корням и дру­гим органам и клеткам образуют нисходящий ток, движутся по ситовидным трубкам с клетками-спутницами.

Часть органа (стебля, корня, черешка), где размещены сосуды или трахеиды, называется ксилемой; ситовидные трубки с клетками — спутницами — флоэмой.

В состав ксилемы и флоэмы входят и другие ткани — механические, основ­ные, но наиболее характерными анатомическими элементами их являются про­водящие ткани.

СОСУДЫ — различной толщины трубки, которые состоят из члеников (клеток). Поперечные стенки у толстых сосудов, более или менее горизон­тальны. В узких сосудах — они скошенные, часто под острым углом. Диаметр сосудов — от 0,1-0,2 мм до 0,3-0,7 мм (лианы). Длина их от нескольких сантиметров до нескольких метров (лианы, некоторые деревья). Сосуды редко расположены в одиночку. Обычно их находится целый пучок. Во время формирования сосудов на их внутренней поверхности образуются целлюлозные утолщения — кольчатые и спиральные, которые не препятствуют удлинению сосудов. Позже возникают (в более широких сосудах) лестничные и сетчатые утолщения. Они занимают большую часть поверхности стенок. Наибольшая площадь утолщения у точечных, или порис­тых сосудов. Здесь не утолщены лишь поры. Сосуды свойственны высокораз­витым покрытосеменным растениям и относятся к высшей ступени в эволюции проводящих элементов ксилемы.

До возникновения сосудов функции проведения выполняли трахеиды, свойственные высшим споровым и голосеменным растениям. Они сохранились и у большинства покрытосеменных растений в мелких жилках листа.

ТРАХЕИДЫ — отдельные прозенхимные клетки со скошенными концами, которыми они и причленяются друг к другу, образуя проводящую сеть. Ме­жду соседними трахеидами нет сплошных отверстий, как у сосудов. Сообща­ются они посредством округлых окаймленных пор. Трахеидам свойст­венны такие же утолщения стенок. В сформировавшихся трахеидах протопласт отмирает, и они, как и сосуды, от­носятся к мертвым тканям.

В стадии формирования трахеиды и сосуды состоят их чистой целлюлозы, затем идет одревеснение. Сначала пропитываются лигнином утолщения, а за­тем и вся оболочка клеток, что увеличивает прочность ксилемы.

Сосуды и трахеиды всегда соприкасаются с паренхимной тканью. Клетки паренхимы посредством плазмодесм через поры могут врастать в сосуды. Ино­гда плазмодесмы разрастаются там, образуя тиллы. С возрастом все большая масса сосудов древесных растений заполняется тиллами и они превращаются в механическую ткань. Ксилема приобретает большую прочность, т.к. тиллы древеснеют и заполняются дубильными и смо­листыми веществами.

СИТОВИДНЫЕ ТРУБКИ флоэмы состоят из живых клеток. Ситовидными они называются потому, что перегородки между клетками пронизаны боль­шим количеством сквозных отверстий (сита), через которые проходят плазмодесмы, соединяющие протопласты соседних клеток. В их протопласте могут содержаться хлоропласты, лей­копласты, крахмал. В клеточном соке растворены белки и углеводы, ядро деге­нерирует. Стенки их состоят из чистой целлюлозы и лишь к концу вегетации растений у некоторых трубок древеснеют.

Размещаются ситовидные трубки в одиночку или пучками. В последнем случае в местах их соприкосновения образуются ситовидные отверстия. Длина клеток ситовидных трубок до 2 мм, толщина — несколько десятков микрометров.

Клетки-спутницы сопутствуют ситовидным трубкам. Они тоньше и короче, слабо вакуолизированы, сохранили ядро. Сообщаются с ситовидными трубка­ми через ситовидные отверстия. Они имеются не у всех высших растений. Их нет у хвойных и некоторых покрытосеменных (картофель).

Таким образом, проводящие ткани представлены живыми и мертвыми клетками (элементами). Из этого следует, что функцию проведения они выполняют при помощи различных сил. Если по сосудам и трахеидам вода и рас­творенные в ней вещества передвигаются под действием осмотических сил, корневого давления и сил сцепления, то по живым ситовидным трубкам с уча­стием клеток спутниц — путем обменных процессов (биологических сил). В результате скорость движения продуктов ассимиляции (сахаров) в сотни раз больше, чем воды в сосудах.

Механические ткани.Прочность растений определяется всей совокупностью тканей, их взаимным расположением. Однако основную роль здесь играют механические ткани. Общим свойством всех механических тканей является утолщенность клеточных оболочек. Утолщение может быть равномерным и неравномерным.

Все механические ткани делятся на три типа: колленхима, склеренхима и склереиды (каменистые клетки). Склеренхима и склереиды при окончательном формировании ткани, представлены мертвыми клетками, колленхима — живы­ми.

КОЛЛЕНХИМА расположена обычно в периферической части растущих мо­лодых стеблей, черешков, плодоножек, листовых жилок и др. Клетки вакуолизированы. Живой их протопласт содержит ядро и хлоропласты. Оболочка кле­ток не древеснеет и на анатомическом срезе выделяется красивым серебристым блеском.

Стенки клетки утолщены неравномерно. В одних случаях утолщены тангентальные стенки, что на поперечном срезе придает им вид выемчатых пласти­нок и ткань получила название пластинчатой колленхимы. В других случаях четырехугольные клетки утолщены в углах — уголковая. Колленхима имеет межклетники, и если стенки, окружающие их, утолщены — рыхлая. В большинстве случаев клетки колленхимы имеют паренхимную форму и только в отдельных случаях они прозенхимные. Колленхима залегает или в виде сплошного ци­линдра или отдельными изолированными тяжами (при ребристой поверхно­сти стебля или черешка). Характерна, в основном, для двудольных растений.

СКЛЕРЕНХИМА состоит из прозенхимных, вначале живых, а во взрослом состоянии мертвых клеток с равномерно утолщенными, чаще одревесневши­ми оболочками, пронизанными поровыми каналами. В зависимости от проис­хождения склеренхима бывает первичная (из прокамбия, перицикла, основной ткани первичной коры) и вторичная (из камбия). По расположению: коровая, периваскулярная (перициклическая), лубяные волокна, древесные волокна.

ЛУБЯНЫЕ ВОЛОКНА — наиболее прозенхимные элементы растений. Толщина их не превышает несколько сотых миллиметра, а длина лубяных волокон, например, у льна — 60 мм, крапивы — 80 мм, у рами — 250 мм. Молодые клетки лубяных волокон — живые, имеют протопласт с многочис­ленными ядрами. Затем стенки утолщаются, древеснеют, протопласт отмира­ет. Но у некоторых растений (лен, рами) они остаются чисто целлюлозными, что определяет их высокие текстильные качества. Лубяные волокна объединены в пучки, прочность которых определяется тем, что концы одних вклиниваются между концами других, смежных воло­кон, а также тончайшим строением фибрилл, расположенных спирально.

Древесные волокна гораздо короче, не более 2 мм. Стенки клеток их всегда одревеснены. Особенно сильно развиты в стеблях древесных растений — составляют основную массу древесины. Древесные волокна во вторичной древесине — либриформ.

СКЛЕРЕИДЫ встречаются в различных органах — стеблях, листьях, кор­нях, плодах, имеют обычно изодиаметрическую форму, встречаются склереиды ветвистые (астросклереиды), округлые (брахисклереиды) и вытянутые (остеосклереиды). Стенки клеток сильно пропитаны лигнином и минеральными солями, что придает им большую прочность (отсюда каменистые клетки) — незрелые плоды груши, айвы, косточки сливы, абрикоса, персика. Они обычно разбросаны среди мякоти плода, листа или стебля, что придает им повышенную прочность. В начале формирования каменистые клетки живые, но затем они отмирают и выполняют лишь механическую функцию, а в ряде случаев за­щитную роль.

Выделительная система.В отличие от животных, у растений нет специализированных органов, тка­ней и клеток для выведения неиспользованных веществ, ядовитых, вредных соединений и других продуктов обмена. В большинстве случаев отдельные об­разования (млечники, смоляные ходы, нектарники) выполняют секреторную функцию.

У растений различают две группы структур выделительной системы:

1. Структуры наружной секреции. Характеризуются общим происхождением из клеток эпидермы с участием и субэпидермальных клеток. Ее составляют: железистые волоски — трихомы — выросты клеток эпидермы, где накапли­ваются экскреторные вещества. Они не только накапливают, но и могут выво­дить из растения эти вещества в газообразном, жидком и твердом состоянии и выполняют выделительную функцию. По строению разнообразны: головчатые с одноклеточной головкой (пеларгония), многоклеточной (хмель). Выделяют разнообразные продукты — смоляные, камедевые, масляные, слизевые, часто имеющие лекарственное и промышленное значение;

Читать еще:  Производство и продажа вязаных вещей

гидатоды — водяные устьица, один из активнейших органов выделения. Образуются по краю листа на верхушке зубчиков. Обычно они представляют устьице, к которому примыкает группа тонкостенных клеток мезофилла листа. Иногда гидатоды представлены многоклеточным волоском (фасоль). Процесс выделения воды в капельно — жидком состоянии называется гуттацией. Интен­сивность гуттации может достигать 180 капель в минуту. Гутта содержит соли, сахара и другие вещества;

нектарники— специализированные железки, выделяющие нектар. Разли­чают: флоральные — расположены на цветках: у основания тычинок или под ты­чинками (гвоздичные, маревые), у основания завязи (астровые), в виде изме­ненных тычинок (стаминодии) — мотыльковые, барбарисовые; экстрафлоральные- на вегетативных органах: на цветоножках, прилистни­ках, стеблях и листьях (пассифлора). Формируются клетками эпидермы лежа­щими под ней. Выделяется нектар через устьица или непосредственно через стенку клетки.

осмофоры — эфирномасличные железки, образуют эфирные масла. Фор­мируются в эпидерме, самой различной формы — крыловидные, ворсистые, рес­нитчатые. Секреторная ткань многослойна.

2. Структуры внутренней секреции. Накапливают дубильные вещества, млеч­ный сок, эфирные масла, кристаллы и др.

млечники— содержат млечный сок, обнаружены у 125000 видов. Живые клетки, имеют постенный слой цитоплазмы с многочисленными ядрами, круп­ную вакуоль, заполненную млечным соком (латексом). Стенки млечников отличаются высокой эластичностью, не одревесневают (маковые, молочайные, астровые и др.).

По происхождению и строению различают: членистые млечники — много­клеточные, состоят из ряда вытянутых клеток, без поперечных перегородок (мак, колокольчик, цикорий, чеснок). Как правило, расположены в лубя­ной части (флоэма), или по всему органу (лист цикория); нечленистые (простые млечники) — формируются из одной клетки еще в за­родыше. Имеют различную форму: цилиндрическую (крапива, конопля), ветвистую (молочай, шелковица).

В млечном соке содержатся не только экскреты — конечные продукты об­мена (таниды, алкалоиды, органические кислоты, соли калия и кальция), но и побочные (терпены, каучук, смолы), а также и запасные органические вещест­ва — крахмал (молочай), белок (фикус), сахара (цикорий), жиры и ферменты (дынное дерево). Поэтому функция млечников — проводящая, запасающая и экскреторная.

Вместилища— по происхождению различают: схизогенные вместилища или ходы, формируются за счет межклетников. Обкладочные или эпителиаль­ные клетки, которые выделяют в полость экскреторное вещество: терпены (миртовые, сельдерейные), бальзамы (аралиевые, сосновые), камеди, слизи (стеркулиевые); лизигенные вместилища — формируются в результате растворения (лизиса) группы клеток (цитрусовые).

Идиобласты– живые, крупные, одиночные клетки, накапливающие секреты.

Сосудисто-волокнистые пучки.Элементы ксилемы и флоэмы в органах растения соче­таются в пучки. К проводящим элементам ксилемы и флоэмы обычно присое­динены механические элементы — склеренхима, отсюда — сосудисто-волокнистые пучки.

Тонкие разветвления пучков, например, в листьях, постепенно утрачивают механические элементы и выполняют проводящую функцию. Такие пучки на­зывают проводящими. Состав: основная, проводящая, механическая, образова­тельная ткани.

Пучки, не содержащие образовательной ткани, называются закрытыми. Пучки с действующей образовательной тканью — открытые.

В зависимости от расположения флоэмы относительно ксилемы различают пучки:

1.Коллатеральные — ксилема прилегает к флоэме с одной стороны. Встре­чаются в листьях и стеблях двудольных (открытые) и однодольных (закрытые).

2. Биколлатеральные — в органах радиального строения (стебель, корень) некоторых растений (пасленовые, тыквенные Флоэма расположена с двух сторон относительно ксилемы.

3. Радиальные пучки. Участки ксилемы располагаются по радиусам, а между ними в периферической части корня – флоэма (корни однодольных и двудольных растений в зоне всасывания).

4. Пучки концентрического строения. В одних случаях в центре ксилема, а вокруг нее флоэма (центрофлоэмные — в корневищах однодольных), в других наоборот (центроксилемные — в корневищах папоротника). Сосудисто-волокнистые пучки густой сетью пронизывают все тело растения. Насколько густа может быть такая сеть, вспомните мочалку из люффы (сем. тыквенных). Это не что иное, как сеть сосудисто-волокнистых пучков плода люффы, освобожденная от мягких тканей.

Заключение.Все виды тканей в растении специализированы для выполнения определенных функций и при рациональном взаимном расположении обеспечивают анатомо-морфологическую и функциональную целостность растительного организма.

Ткани растений

Ткань – это группа клеток, сходных по строению, происхождению и выполняемым функциям. Из тканей образованы органы и системы органов. Разные органы растений образуют единый организм.

У растений различают 6 видов тканей: образовательная, покровная, основная, опорная, проводящая и выделительная.

Образовательная ткань (меристема) имеет клетки с тонкими оболочками, плотно прилегающими друг к другу. Подразделяются на: верхушечные, боковые, вставочные, раневые.

Верхушечная меристема – на верхушке побега (апикальная) или кончике корня.

Боковые меристемы – камбий и пробковый камбий (феллоген).

Вставочные меристемы – в основаниях междоузлии стеблей злаков.

Раневые меристемы – в любом участке, где имеется повреждение.

Клетки образовательных тканей постоянно делятся. За счет увеличения числа клеток и их роста растения растут и развиваются. Со временем клетки утрачивают способность делиться. Клетки превращаются в постоянные ткани. К ним относятся покровные, основные, проводящие и др.

Покровная ткань (эпидерма, перидерма, корка) формируется на поверхности органов. Она защищает растение от высыхания, от неблагоприятных условий среды и механических повреждений. Клетки кожицы – эпидермис – образуются на молодых листьях и стеблях. Со временем развивается пробка. Это многослойная ткань состоит из мёртвых, плотно прилегающих друг к другу клеток. Кора – это наружная часть ствола деревьев, защищающая от излишнего испарения, перегрева, вымерзания, ожога солнечными лучами.

Основная ткань (паренхима) состоит из живых клеток и образует основу всех органов растения. Основная ткань делится на:

фотосинтезирующую, запасающую, водоносную, воздухоносную.

Фотосинтезирующая ткань содержит хлоропласты, в которых происходит фотосинтез. Встречается в листьях и молодых побегах.

Запасающая ткань стеблей, луковиц, листьев, корнеплодов, корневищ участвует в накоплении питательных веществ. Все межклеточное пространство относится к этому виду тканей.

Водоносная ткань содержится в стеблях и листьях пустынных растений. Воздухоносная ткань рыхлая, хорошо развиты межклетники, благодаря которым кислород доставляется к различным частям растений.

Опорная, или механическая ткань (склеренхима и колленхима) образована длинными клетками с толстыми одревесневающими стенками и отмершим содержимым. Выполняет у растений роль каркаса или опоры. Она находится в стеблях, листьях и плодах. Опорная ткань придаёт прочность и упругость всем органам растений. К опорным тканям относятся: каменистые клетки, содержащиеся в мякоти плодов груши, айвы, рябины, в семенах пальмы, в косточках вишни, сливы, абрикоса и персика.

В органах молодых растений опорная ткань развивается не сразу. Плотный эпидермис надежно защищает от разных воздействий окружающей среды. По мере созревания оболочка становится твердой, стенки утолщаются и одревеснеют, превращаясь в лубяные волокна. В древесине находят древесные волокна.

Проводящая ткань обеспечивает передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани – ксилему (древесину) и флоэму (луб).

Ксилема – это главная водопроводящая ткань высших сосудистых растений. Она обеспечивает передвижение воды с растворенными в ней минеральными веществами от корней к листьям и другим частям растения (восходящий ток). В состав ксилемы входят сосуды (трахеи) и мертвые клетки с одревесневшими оболочками (трахеиды), древесинная основная (паренхима) и механическая ткань.

Читать еще:  Производственная инструкция для лифтеров по обслуживанию лифтов

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью и состоит из ситовидных трубок с клетками-спутницами.

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы – проводящие пучки.

Выделительные ткани растений очень разнообразны: железистые клетки, нектарники, млечные сосуды (млечники), смоляные ходы, переваривающие железки насекомоядных растений. Эти ткани сильно различаются по строению и размещению в теле растения. Растения выделяют очень разнообразные в химическом отношении вещества.

Проводящая ткань: особенности строения

Почти все многоклеточные живые организмы состоят из различных типов тканей. Это совокупность клеток, похожих по строению, объединенных общими функциями. Для растений и животных они неодинаковы.

Разнообразие тканей живых организмов

В первую очередь все ткани можно разделить на животные и растительные. Они бывают разными. Давайте рассмотрим их.

Какими могут быть животные ткани?

Животные ткани бывают таких типов:

Все они, кроме первой, делятся на виды. Мышечная ткань бывает гладкой, поперечно-полосатой и сердечной. Эпителиальная делится на однослойную, многослойную — в зависимости от количества слоев, а также на кубическую, цилиндрическую и плоскую — в зависимости от формы клеток. Соединительная ткань объединяет такие виды, как рыхлая волокнистая, плотная волокнистая, ретикулярная, кровь и лимфа, жировая, костная и хрящевая.

Разнообразие тканей растений

Растительные ткани бывают следующих типов:

  • основная;
  • покровная;
  • проводящая ткань;
  • механическая;
  • образовательная.

Все типы растительных тканей объединяют несколько видов. Так, к основным относятся ассимиляционная, запасающая, водоносная и воздухоносная. Покровные ткани объединяют такие виды, как кора, пробка и эпидерма. К проводящей ткани относятся флоэма и ксилема. Механическая делится на колленхиму и склеренхиму. К образовательным относятся боковые, верхушечные и вставочные.

Все ткани выполняют определенные функции, и их строение соответствует роли, которую они выполняют. В этой статье будет рассмотрена подробнее проводящая ткань, особенности строения ее клеток. Также поговорим и о ее функциях.

Проводящая ткань: особенности строения

Эти ткани делятся на два вида: флоэму и ксилему. Так как они обе сформированы из одной и той же меристемы, то в растении они расположены рядом друг с другом. Однако строение проводящих тканей двух видов различается. Давайте поговорим подробнее о двух типах проводящих тканей.

Функции проводящих тканей

Их основная роль — транспорт веществ. Однако функции проводящих тканей, относящихся не к одному виду, различаются.

Роль ксилемы — проведение растворов химических веществ от корня вверх ко всем остальным органам растения.

А функция флоэмы — проведение растворов в обратном направлении — от определенных органов растения по стеблю вниз к корню.

Что такое ксилема?

Она также еще называется древесиной. Проводящая ткань данного вида состоит из двух разных проводящих элементов: трахеид и сосудов. Также в ее состав входят механические элементы — древесинные волокна, и основные элементы — древесинная паренхима.

Как устроены клетки ксилемы?

Клетки проводящей ткани делятся на два вида: трахеиды и членики сосудов. Трахеида — это очень длинная клетка с ненарушенными стенками, в которых присутствуют поры для транспорта веществ.

Второй проводящий элемент клетки — сосуд — состоит из нескольких клеток, которые называются члениками сосудов. Эти клетки расположены друг над другом. В местах соединения члеников одного и того же сосуда находятся сквозные отверстия. Они называются перфорациями. Эти отверстия необходимы для транспорта веществ по сосудам. Перемещение разнообразных растворов по сосудам происходит намного быстрее, чем по трахеидам.

Клетки обоих проводящих элементов являются мертвыми и не содержат протопластов (протопласты — это содержимое клетки, за исключением клеточной стенки, то есть это ядро, органоиды и клеточная мембрана). Протопласты отсутствуют, так как если бы они были в клетке, транспорт веществ по ней был бы очень затруднен.

По сосудам и трахеидам растворы могут транспортироваться не только вертикально, но и горизонтально — к живым клеткам или соседним проводящим элементам.

Стенки проводящих элементов имеют утолщения, которые придают клетке прочность. В зависимости от вида данных утолщений, проводящие элементы делятся на спиральные, кольчатые, лестничные, сетчатые и точечно-поровые.

Функции механических и основных элементов ксилемы

Древесинные волокна еще называются либриоформом. Это вытянутые в длину клетки, которые обладают утолщенными одревесеневшими стенками. Они выполняют опорную функцию, обеспечивающую прочность ксилемы.

Элементы основной ткани в ксилеме представлены древесинной паренхимой. Это клетки с одревесневшими оболочками, в которых располагаются простые поры. Однако в месте соединения клетки паренхимы с сосудом находится окаймленная пора, которая соединяется с его простой порой. Клетки древесинной паренхимы, в отличие от клеток сосудов, не пустые. Они обладают протопластами. Паренхима ксилемы выполняет резервную функцию — в ней запасаются питательные вещества.

Чем отличается ксилема разных растений?

Так как трахеиды в процессе эволюции возникли намного раньше, чем сосуды, эти проводящие элементы присутствуют и у низших наземных растений. Это споровые (папоротники, мхи, плауны, хвощи). Большинство голосеменных растений также обладают только трахеидами. Однако у некоторых голосеменных есть и сосуды (они присутствуют у гнетовых). Также, в порядке исключения, названные элементы присутствуют и у некоторых папоротников и хвощей.

А вот покрытосеменные (цветковые) растения все обладают и трахеидами, и сосудами.

Что такое флоэма?

Проводящая ткань данного вида еще называется лубом.

Основная часть флоэмы — ситовидные проводящие элементы. Также в структуре луба присутствуют механические элементы (флоэмные волокна) и элементы основной ткани (флоэмная паренхима).

Особенности проводящей ткани данного вида заключаются в том, что клетки ситовидных элементов, в отличие от проводящих элементов ксилемы, остаются живыми.

Строение ситовидных элементов

Существует два их вида: ситовидные клетки и ситовидные трубки. Первые вытянуты в длину и обладают заостренными концами. Они пронизаны сквозными отверстиями, через которые и происходит транспорт веществ. Ситовидные клетки более примитивны, чем многоклеточные ситовидные элементы. Они характерны для таких растений, как споровые и голосеменные.

У покрытосеменных растений проводящие элементы представлены ситовидными трубками, состоящими из множества клеток — члеников ситовидных элементов. Сквозные отверстия двух соседних клеток образуют ситовидные пластинки.

В отличие от ситовидных клеток, в упомянутых структурных единицах многоклеточных проводящих элементов отсутствуют ядра, однако они все равно остаются живыми. Важную роль в строении флоэмы покрытосеменных растений играют также клеки-спутницы, находятщиеся рядом с каждой клеткой-члеником ситовидных элементов. В спутницах есть как органоиды, так и ядра. В них происходит обмен веществ.

Учитывая то, что клетки флоэмы живые, эта проводящая ткань не может долго функционировать. У многолетних растений период ее жизни составляет три-четыре года, после чего клетки этой проводящей ткани отмирают.

Дополнительные элементы флоэмы

Кроме ситовидных клеток или трубок, в этой проводящей ткани также присутствуют элементы основной ткани и механические элементы. Последние представлены лубяными (флоэмными) волокнами. Они выполняют опорную функцию. Не все растения обладают флоэмными волокнами.

Элементы основной ткани представлены флоэмной паренхимой. Она, так же как и ксилемная паренхима, выполняет резервную роль. В ней запасаются такие вещества, как танниды, смолы и др. Особенно развиты эти элементы флоэмы у голосеменных растений.

Флоэма различных видов растений

У низших растений, таких как папоротники и мхи, она представлена ситовидными клетками. Такая же флоэма характерна и для большей части голосеменных растений.

Читать еще:  Насосные станции Grundfos для водоснабжения

Покрытосеменные растения обладают многоклеточными проводящими элементами: ситовидными трубками.

Структура проводящей системы растения

Ксилема и флоэма всегда располагаются рядом и образуют пучки. В зависимости от того, как два типа проводящей ткани располагаются друг относительно друга, различают несколько видов пучков. Наиболее часто встречаются коллатеральные. Они устроены таким образом, что флоэма лежит по одну сторону от ксилемы.

Также существуют концентрические пучки. В них одна проводящая ткань окружает другую. Они делятся на два вида: центрофлоэмные и центроксилемные.

Проводящая ткань корня обладает обычно радиальными пучками. В них лучи ксилемы отходят от центра, а флоэма находится между лучами ксилемы.

Коллатеральные пучки больше характерны для покрытосеменных растений, а концентрические — для споровых и голосеменных.

Заключение: сравнение двух типов проводящих тканей

В качестве вывода приведем таблицу, в которой сокращенно указаны основные данные о двух видах проводящих тканей растений.

Лекция 2. Образовательные и покровные ткани. Постоянные ткани: проводящие, механические

План лекции:

1 Образовательные ткани, классификация, расположение и значение.

2 Основные ткани, их функции.

3 Покровные ткани. Первичные, вторичные и третичные покровные ткани.

4 Выделительные ткани.

5 Механические ткани. Колленхима, склеренхима, склереиды.

6 Проводящие ткани: ксилема и флоэма. Типы проводящих пучков.

Продолжительность лекции: 1 час.

1 Образовательные ткани, классификация, расположение и значение.

Тело растения формируется в результате деятельности образовательных тканей, называемых меристемами. Основное свойство меристем – способность к делению и образованию новых клеток. В теле растения образовательные ткани функционируют в течение всей жизни. У векового дерева, наряду с очень старыми тканями можно обнаружить и молодые.

В составе меристем различают: 1) инициальные клетки, или инициали, и 2) производные от инициалей. Инициали сохраняют способность к делению в течение всей жизни растения и всегда остаются в составе меристем. Производные от инициалей делятся некоторое число раз, затем превращаются в постоянные ткани.

По происхождению различают: 1) первичные меристемы, которые берут начало непосредственно от меристем зародыша, и 2) вторичные меристемы, образующиеся на более поздних этапах развития растения либо из первичных меристем, либо в результате дедифференциации постоянных тканей. Постоянные ткани, образовавшиеся из первичных меристем, называются первичными, из них складывается первичная структура тела растения. Из вторичных меристем образуются вторичные ткани, которые определяют вторичный рост растения.

В зависимости от местоположения выделяют четыре типа меристем: 1) верхушечные, или апикальные; 2) боковые, или латеральные; 3) вставочные, или интеркалярные; 4) раневые, или травматические.

Верхушечные (апикальные) меристемы закладываются с первых стадий развития зародыша на верхушке побега и на кончике зародышевого корешка (рис. 9). Они обеспечивают рост этих органов в длину. Апикальные меристемы всегда первичны, они образуют конусы нарастания корня и побега.

Боковые (латеральные) меристемырасполагаются по окружности осевых органов (корней, стеблей) в виде цилиндров, которые на поперечных срезах имеют вид колец. Первичные боковые меристемы – прокамбий, перицикл – возникают непосредственно под апексами и в непосредственной связи с ними. Вторичные латеральные меристемы: камбий – возникает из прокамбия — и пробковый камбий (феллоген) — образуется из клеток постоянных тканей. Боковые меристемы обеспечивают рост корня и стебля в толщину. Из прокамбия и камбия образуются проводящие ткани, из феллогена — перидерма.

А – продольный разрез; Б – внешний вид и продольный разрез конуса нарастания; В – клетки первичной меристемы; Г – паренхимная клетка листа, закончившая дифференцировку; 1 – конус нарастания; 2 – зачаток листа; 3 – зачаток бокового побега

Рисунок 9 — Верхушечная меристема побега элодеи

Вставочные (интеркалярные) меристемынаходятся в основаниях междоузлий побегов и молодых листьев. Вставочные меристемы не имеют в своем составе инициалей и со временем полностью превращаются в постоянные ткани. Интеркалярный рост характерен для стеблей злаков, наблюдается также в основании луковиц, завязей.

Раневые (травматические) меристемы обычно образуются при повреждении тканей и органов. Живые клетки постоянных тканей, окружающие пораженные участки, дедифференцируются и начинают делиться, т.е. превращаются во вторичную меристему. Раневые меристемы закрывают рану и способствует ее заживлению.

5 класс. Биология. Ткани растений

5 класс. Биология. Ткани растений

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Не все клетки растения одинаковы. Рассматривая под микроскопом срезы различных органов растений, учёные замечали, что клетки расположены упорядоченно, они как будто образуют узор. Так были открыты ткани.

Ткань

Ткань – группа клеток, сходных по строению и выполняющих одинаковые функции. Выделяют несколько видов растительных тканей: покровные, основные, механические, проводящие и образовательные.

Многие ткани включают клетки нескольких типов. Однако общее происхождение всех этих клеток и единая функция, выполняемая ими, позволяют говорить о единстве ткани.

Обычно растительный организм включает несколько тканей каждого типа. Так, различные участки тела растения могут быть покрыты первичной покровной тканью, состоящей из одного слоя клеток, и многослойными вторичными и третичными покровными тканями. Рис. 1.

Рис. 1.

Покровная ткань

Покровные ткани выполняют защитную функцию. Они образованы живыми или мертвыми клетками с плотно сомкнутыми, утолщенными оболочками. Эти ткани находятся на поверхности корней, стеблей, листьев. Оболочки клеток могут пропитываться специальными веществами, которые делают их более прочными или усиливают их изолирующие свойства.

Механическая ткань

Механические ткани придают прочность растениям. Они также образованы группами клеток с утолщенными оболочками. Рис. 2. У некоторых клеток оболочки одревесневают – пропитываются специальным веществом – лигнином.

Рис. 2.

Проводящие ткани образованы живыми или мертвыми клетками, которые имеют вид трубок или сосудов. По ним передвигаются растворенные в воде питательные вещества. Рис. 3.

Рис. 3.

Основная ткань

Основные ткани занимают всё пространство между покровными, механическими и проводящими тканями. Их различают несколько видов в зависимости от того, какую функцию выполняют их клетки. Рис. 4. Основная их функция – синтез и запасание различных веществ.

Рис. 4.

Секреторными называются ткани, выделяющие некие вещества. Они весьма разнообразны. Железистые волоски служат для выведения ненужных веществ из организма растения, иногда для защиты (вспомните, например, крапиву). Рис. 5. Нектарники служат для выделений сахаристой жидкости. Нектар служит средством привлечения опылителей. Также секреторной тканью выделяются эфирные масла (ими пахнут многие цветы и пряные растения) и млечный сок.

Рис. 5. Железистые волоски

Воздухоносная ткань, или аэренхима, встречается у водных и болотных растений. Рис. 6. Это вместилище запасов воздуха для потребностей дыхания. Иногда выделительную и воздухоносную ткани относят к основным.

Рис. 6.

Образовательная ткань

Клетки образовательных тканей имеют небольшие размеры, тонкую оболочку и относительно крупное ядро. Они делятся, образуя новые клетки, из которых формируются другие ткани. Клетки остальных тканей часто настолько специализированы, что не могут делиться.

Гистология

Два выдающихся натуралиста XVII в. – итальянец Мальпиги и англичанин Грю – являются основоположниками науки о тканях – гистологии. Исследуя под микроскопом стебли, листья, почки и плоды растений, они, кроме клеток, которые описал Р. Гук, нашли множество простых и спиральных трубочек, а также волокон, свидетельствующих о сложности строения растений.

Покровные ткани

Они защищают ткани от высыхания, температурных повреждений и других неблагоприятных воздействий окружающей среды.

Эпидерма – первичная покровная ткань, состоит из одного слоя живых клеток, плотно примыкающих друг к другу.

Пробка – вторичная покровная ткань, состоит из нескольких слоев отмерших клеток.

Корка – третичная покровная ткань, несколько слоев пробки. Рис. 7.

Рис. 7.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector