Коэффициент паропроницаемости материала слоя ограждающей конструкции - Домашний мастер Dach-Master.ru
15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент паропроницаемости материала слоя ограждающей конструкции

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

Сопротивление паропроницанию материалов и тонких слоев пароизоляции. Паропроницаемость – типичные заблуждения Коэффициент паропроницаемости материала слоя ограждающей конструкции

Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.

Существует ряд свойств теплоизоляции, важность которых не вызывает сомнения: это теплопроводность, прочность и экологичность. Совершенно очевидно, что эффективная теплоизоляция должна обладать низким коэффициентом теплопроводности, быть прочной и долговечной, не содержать веществ, вредных для человека и окружающей среды.

Однако есть одно свойство теплоизоляции, которое вызывает массу вопросов – это паропроницаемость. Должен ли утеплитель пропускать водяной пар? Низкая паропроницаемость – достоинство это или недостаток?

Сторонники ватных утеплителей уверяют, что высокая паропропускная способность – это несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.

Адепты же пеноплэкса и его аналогов заявляют: утеплитель должен работать как термос, а не как дырявый «ватник». В свою защиту они приводят следующие аргументы:

Читать еще:  Технические характеристики шпаклевки фугенфюллер кнауф

1. Стены – это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию – защищают дом от воздействия окружающей среды. Органами дыхания для дома является вентиляционная система, а также, частично, окна и дверные проемы.

Во многих странах Европы приточно-вытяжная вентиляция устанавливается в обязательном порядке в любом жилом помещении и воспринимается такой же нормой, как и централизованная система отопления в нашей стране.

2. Проникновение водяного пара сквозь стены является естественным физическим процессом. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало, что его можно не брать в расчет (от 0,2 до 3%* в зависимости от наличия/отсутствия системы вентиляции и её эффективности).

* Погожельски Й.А, Каспэркевич К. Тепловая защита многопанельных домов и экономия энергии, плановая тема NF-34/00, (машинопись), библиотека ITB.

Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала. Теперь попробуем выяснить, может ли данное свойство считаться недостатком?

Чем опасна высокая паропроницаемость утеплителя?

В зимнее время годы, при минусовой температуре за пределами дома, точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна находиться в утеплителе (в качестве примера взят экструдированный пенополистирол).

Рис.1 Точка росы в плитах ЭППС в домах с облицовкой по утеплителю

Рис.2 Точка росы в плитах ЭППС в домах каркасного типа

Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь выясним, чем же опасен конденсат в утеплителе?

Во-первых, при образовании в утеплителе конденсата он становится влажным. Соответственно, снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять противоположную функцию – выводить тепло из помещения.

Известный в области теплофизики эксперт, д.т.н., профессор, К.Ф. Фокин заключает: «Гигиенисты рассматривают воздухопроницаемость ограждений как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».

Кроме того в СП 23-02-2003 «Тепловая защита зданий» раздел №8 указано, что воздухопроницаемость ограждающих конструкций для жилых зданий должна быть не более 0,5 кг/(м²∙ч).

Во-вторых , вследствие намокания теплоизолятор утяжеляется. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же возрастает нагрузка на несущие конструкции. Через несколько циклов: мороз – оттепель такой утеплитель начинает разрушаться. Чтобы защитить влагопроницаемый утеплитель от намокания его прикрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему требуется защита полиэтиленом, либо специальной мембраной, которая сводит на нет все его «дыхание».

Ни полиэтилен, ни мембрана не пропускают молекулы воды в утеплитель. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) размером больше, чем молекула воды. Соответственно, воздух также не способен проходить через подобные защитные пленки. В итоге мы получаем помещение с дышащим утеплителем, но покрытое воздухонепроницаемой пленкой – своеобразную теплицу из полиэтилена.

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2. ч. Па/мг ) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO , котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. — м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Паропроницаемость стен – избавляемся от вымыслов.

В данной статье мы постараемся дать ответ на следующие частые вопросы: что такое паропроницаемость и нужна ли пароизоляция при строительстве стен дома из пеноблоков или кирпича. Вот только несколько типичных вопросов, которые задают наши клиенты:

« Среди множества различных ответов на форумах прочитал я о возможности заполнения зазора между кладкой из поризованной керамики и облицовочным керамическим кирпичом обычным кладочным раствором. Не противоречит ли это правилу уменьшения паропроницаемости слоёв от внутренних к наружным, ведь паропроницаемость цементно-песчаного раствора более чем в 1,5 раза ниже, чем у керамики ? »

Или вот еще: « Здравствуйте. Имеется дом из газобетонных блоков, хотелось бы если не облицевать весь, то хотя бы украсить дом клинкерной плиткой, но в некоторых источниках пишут что нельзя прямо на стену — она должна дышать, как быть. А то вот некоторые дают схему что можно. Вопрос: Как керамическая фасадная клинкерная плитка крепится к пеноблокам

Для правильных ответов на такие вопросы нам необходимо разобраться в понятиях «Паропроницаемость» и «Сопротивление паропереносу».

Итак, паропроницаемость слоя материала — это способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя материала, характеризуемая величиной коэффициента паропроницаемости или сопротивлением проницаемости при воздействии водяного пара. Единица измерения µ — расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции мг / (м час Па). Коэффициенты для различных материалов можно посмотреть в таблице в СНИП II-3-79.

Коэффициент сопротивления диффузии водяного пара – это безразмерная величина, показывающая, во сколько раз чистый воздух более проницаем для пара, чем какой-либо материал. Сопротивление же диффузии определяют как произведение коэффициента диффузии материала на его толщину в метрах и имеет размерность в метрах. Сопротивление паропроницанию многослойной ограждающей конструкции, определяют по сумме сопротивлений паропроницанию составляющих ее слоев. Но в пункте 6.4. СНИП II-3-79 указано: «Не требуется определять сопротивление паропроницанию следующих ограждающих конструкций: а) однородных (однослойных) наружных стен помещений с сухим или нормальным режимом; б) двухслойных наружных стен помещений с сухим или нормальным режимом, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2 ч Па/мг.». Кроме того, в а в том же СНИПе говорится:

«Сопротивление паропроницанию воздушных прослоек в ограждающих конструкциях следует принимать равным нулю независимо от расположения и толщины этих прослоек».

Так что же получается в случае многослойных конструкций? Для исключения накопления влаги в многослойной стене при движении пара изнутри помещения наружу каждый последующий слой должен обладать большей абсолютной паропроницаемостью, чем предыдущий. Именно абсолютной, т.е. суммарной, подсчитанной с учетом толщины определенного слоя. Поэтому говорить однозначно, что газобетон нельзя, к примеру, облицевать клинкерной плиткой, нельзя. В данном случае значение имеет толщина каждого слоя стеновой конструкции. Чем больше толщина, тем меньше абсолютная паропроницаемость. Чем выше значение произведения µ*d, тем менее паропроницаем соответствующий слой материала. Другими словами, для обеспечения паропроницаемости стеновой конструкции произведение µ*d должно увеличиваться от внешних (наружных) слоёв стены к внутренним.

Читать еще:  Плита дорожная гост 21924 84

К примеру, облицевать газосиликатные блоки толщиной 200 мм клинкерной плиткой толщиной 14 мм нельзя. При таком соотношении материалов и их толщин способность пропускать пары у отделочного материала будет на 70% меньше, чем у блоков. Если же толщина несущей стены будет 400 мм, а плитки по прежнему 14 мм, то ситуация будет противоположной и способность пропускать пары у плитки будет на 15% больше, чем у блоков.

Для грамотной оценки правильности устройства стеновой конструкции Вам понадобятся значения коэффициентов сопротивления диффузии µ, которые представлены в нижеследующей таблице:

Паропроницаемый материал. Паропроницаемость строительных материалов

В последнее время все большее применение в строительстве находят разнообразные системы наружного утепления: «мокрого» типа; вентилируемые фасады; модифированная колодезная кладка и т.д. Всех их объединяет то, что это многослойные ограждающие конструкции. А для многослойных конструкций вопросы паропроницаемости слоев, переноса влаги, количественной оценки выпадающего конденсата являются вопросами первостепенной важности.

Как показывает практика, к сожалению, что этим вопросам как проектировщики, так и архитекторы не уделяют должного внимания.

Мы уже отмечали, что российский строительный рынок перенасыщен импортными материалами. Да, безусловно, законы строительной физики одни и те же, и действуют одинаково, например, как в России, так и в Германии, но методики подхода и нормативная база, очень часто, весьма различны.

Поясним это на примере паропроницаемости. DIN 52615 вводит понятие паропроницаемости через коэффициент паропроницаемости μ и воздушный эквивалентный промежуток s d .

Если сравнить паропроницаемость слоя воздуха толщиной 1 м с паропроницаемостью слоя материала той же толщины, то получим коэффициент паропроницаемости

μ DIN (безразмерный) = паропроницаемость воздуха/паропроницаемость материала

Сравните, понятие коэффициента паропроницаемости μ СНиП в России вводится через СНиП II-3-79* «Строительная теплотехника», имеет размерность мг / (м * ч * Па) и характеризует то количество водяного пара в мг, которое проходит через один метр толщины конкретного материала за один час при разности давлений в 1 Па.

Каждый слой материала в конструкции имеет свою конечную толщину d , м. Очевидно, что количество водяного пара, прошедшего через этот слой будет тем меньше, чем больше его толщина. Если перемножить μ DIN и d , то и получим, так называемый, воздушный эквивалентный промежуток или диффузно-эквивалентную толщину слоя воздуха s d

s d = μ DIN * d [м]

Таким образом, по DIN 52615, s d характеризует толщину слоя воздуха [м], которая обладает равной паропроницаемостью со слоем конкретного материала толщиной d [м] и коэффициентом паропроницаемости μ DIN . Сопротивление паропроницанию 1/Δ определяется как

1/Δ= μ DIN * d / δ в [(м² * ч * Па) / мг],

где δ в — коэффициент паропроницаемости воздуха.

СНиП II-3-79* «Строительная теплотехника» определяет сопротивление паропроницанию R П как

R П = δ / μ СНиП [(м² * ч * Па) / мг],

где δ — толщина слоя, м.

Сравните, по DIN и СНиП сопротивления паропроницаемости, соответственно, 1/Δ и R П имеют одну и ту же размерность.

Мы не сомневаемся, что нашему читателю уже понятно, что вопрос увязки количественных показателей коэффициента паропроницаемости по DIN и СНиП лежит в определении паропроницаемости воздуха δ в .

По DIN 52615 паропроницаемость воздуха определяется как

δ в =0,083 / (R 0 * T) * (p 0 / P) * (T / 273) 1,81 ,

где R 0 — газовая постоянная водяного пара, равная 462 Н*м/(кг*К);

T — температура внутри помещения, К;

p 0 — среднее давление воздуха внутри помещения, гПа;

P — атмосферное давление при нормальном состоянии, равное 1013,25 гПа.

Не вдаваясь глубоко в теорию, отметим, что величина δ в в незначительной степени зависит от температуры и может с достаточной точностью при практических расчетах рассматриваться как константа, равная 0,625 мг/(м*ч*Па) .

Тогда, в том случае, если известна паропроницаемость μ DIN легко перейти к μ СНиП , т.е. μ СНиП = 0,625/ μ DIN

Выше мы уже отмечали важность вопроса паропроницаемости для многослойных конструкций. Не менее важным, с точки зрения строительной физики, является вопрос последовательности слоев, в частности, положение утеплителя.

Если рассматривать вероятность распределения температур t , давления насыщенного пара Рн и давления ненасыщенного (реального) пара Pp через толщу ограждающей конструкции, то с точки зрения процесса диффузии водяного пара наиболее предпочтительна такая последовательность расположения слоев, при которой сопротивление теплопередаче уменьшается, а сопротивление паропроницанию возрастает снаружи внутрь.

Нарушение этого условия, даже без расчета, свидетельствует о возможности выпадения конденсата в сечении ограждающей конструкции (рис. П1).

Отметим, что расположение слоев из различных материалов не влияет на величину общего термического сопротивления, однако, диффузия водяного пара, возможность и место выпадения конденсата предопределяют расположение утеплителя на внешней поверхности несущей стены.

Расчет сопротивления паропроницаемости и проверку возможности выпадения конденсата необходимо вести по СНиП II-3-79* «Строительная теплотехника».

В последнее время пришлось столкнуться с тем, что нашим проектировщикам предоставляются расчеты, выполненные по зарубежным компьютерным методикам. Выскажем свою точку зрения.

· Такие расчеты, очевидно, не имеют юридической силы.

· Методики рассчитаны на более высокие зимние температуры. Так, немецкая методика «Bautherm» уже не работает при температурах ниже -20 °С.

· Многие важные характеристики в качестве начальных условий не увязаны с нашей нормативной базой. Так, коэффициент теплопроводности для утеплителей дается в сухом состоянии, а по СНиП II-3-79* «Строительная теплотехника» должен браться в условиях сорбционной влажности для зон эксплуатации А и Б.

· Баланс набора и отдачи влаги рассчитывается для совершенно других климатических условий.

Очевидно, что количество зимних месяцев с отрицательными температурами для Германии и, скажем, для Сибири совершенно не совпадают.

Паропроницаемость стен – избавляемся от вымыслов.

В данной статье мы постараемся дать ответ на следующие частые вопросы: что такое паропроницаемость и нужна ли пароизоляция при строительстве стен дома из пеноблоков или кирпича. Вот только несколько типичных вопросов, которые задают наши клиенты:

« Среди множества различных ответов на форумах прочитал я о возможности заполнения зазора между кладкой из поризованной керамики и облицовочным керамическим кирпичом обычным кладочным раствором. Не противоречит ли это правилу уменьшения паропроницаемости слоёв от внутренних к наружным, ведь паропроницаемость цементно-песчаного раствора более чем в 1,5 раза ниже, чем у керамики ? »

Или вот еще: « Здравствуйте. Имеется дом из газобетонных блоков, хотелось бы если не облицевать весь, то хотя бы украсить дом клинкерной плиткой, но в некоторых источниках пишут что нельзя прямо на стену — она должна дышать, как быть. А то вот некоторые дают схему что можно. Вопрос: Как керамическая фасадная клинкерная плитка крепится к пеноблокам

Для правильных ответов на такие вопросы нам необходимо разобраться в понятиях «Паропроницаемость» и «Сопротивление паропереносу».

Итак, паропроницаемость слоя материала — это способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя материала, характеризуемая величиной коэффициента паропроницаемости или сопротивлением проницаемости при воздействии водяного пара. Единица измерения µ — расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции мг / (м час Па). Коэффициенты для различных материалов можно посмотреть в таблице в СНИП II-3-79.

Коэффициент сопротивления диффузии водяного пара – это безразмерная величина, показывающая, во сколько раз чистый воздух более проницаем для пара, чем какой-либо материал. Сопротивление же диффузии определяют как произведение коэффициента диффузии материала на его толщину в метрах и имеет размерность в метрах. Сопротивление паропроницанию многослойной ограждающей конструкции, определяют по сумме сопротивлений паропроницанию составляющих ее слоев. Но в пункте 6.4. СНИП II-3-79 указано: «Не требуется определять сопротивление паропроницанию следующих ограждающих конструкций: а) однородных (однослойных) наружных стен помещений с сухим или нормальным режимом; б) двухслойных наружных стен помещений с сухим или нормальным режимом, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2 ч Па/мг.». Кроме того, в а в том же СНИПе говорится:

«Сопротивление паропроницанию воздушных прослоек в ограждающих конструкциях следует принимать равным нулю независимо от расположения и толщины этих прослоек».

Так что же получается в случае многослойных конструкций? Для исключения накопления влаги в многослойной стене при движении пара изнутри помещения наружу каждый последующий слой должен обладать большей абсолютной паропроницаемостью, чем предыдущий. Именно абсолютной, т.е. суммарной, подсчитанной с учетом толщины определенного слоя. Поэтому говорить однозначно, что газобетон нельзя, к примеру, облицевать клинкерной плиткой, нельзя. В данном случае значение имеет толщина каждого слоя стеновой конструкции. Чем больше толщина, тем меньше абсолютная паропроницаемость. Чем выше значение произведения µ*d, тем менее паропроницаем соответствующий слой материала. Другими словами, для обеспечения паропроницаемости стеновой конструкции произведение µ*d должно увеличиваться от внешних (наружных) слоёв стены к внутренним.

Читать еще:  Нужно ли делать армопояс для газобетона

К примеру, облицевать газосиликатные блоки толщиной 200 мм клинкерной плиткой толщиной 14 мм нельзя. При таком соотношении материалов и их толщин способность пропускать пары у отделочного материала будет на 70% меньше, чем у блоков. Если же толщина несущей стены будет 400 мм, а плитки по прежнему 14 мм, то ситуация будет противоположной и способность пропускать пары у плитки будет на 15% больше, чем у блоков.

Для грамотной оценки правильности устройства стеновой конструкции Вам понадобятся значения коэффициентов сопротивления диффузии µ, которые представлены в нижеследующей таблице:

Паропроницаемость материалов

Чтобы создать благоприятную атмосферу для жизни в доме, необходимо учитывать свойства используемых материалов. Особое внимание следует уделить паропроницаемости, этот термин относится к способности материалов испаряться. Благодаря знанию паропроницаемости, вы можете выбрать подходящие материалы для строительства дома.

Определить уровень проницаемости оборудования

Профессиональные строители имеют специальное оборудование для точного определения паропроницаемости определенных строительных материалов. Для расчета описанного параметра используется следующее оборудование:

  • весы с минимальной погрешностью;
  • посуда, необходимая для проведения экспериментов;

инструменты для точного определения толщины строительных материалов.Благодаря таким инструментам описанный атрибут точно определен. Но данные по экспериментальным результатам приведены в таблицах, поэтому нет необходимости определять паропроницаемость материала при строительстве объекта строительства.

Что нужно знать

Следующие материалы имеют высокую паропроницаемость:

Следует отметить, что стены из кирпича или бетона также имеют паропроницаемость, но этот показатель меньше. При перегрузке в парилке он сбрасывается не только через капюшон и окна, но и через стены. Поэтому многие считают, что в зданиях из бетона и кирпича трудно дышать.

Но стоит отметить, что в современном доме большая часть пара проходит через окна и капот. В то же время 5% пара проходит через стены. Важно знать, что в ветреную погоду из-за жары здание из воздухопроницаемых строительных материалов быстрее. Поэтому при строительстве дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении.

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше влажность стен. Высокая теплопроводность строительных материалов низкая. При увлажнении различных строительных материалов индекс паропроницаемости может возрасти до 5 раз. Поэтому необходимо определить пароизоляцию.

Влияние паропроницаемости на других

Стоит отметить, что в случае отсутствия установки отопления во время строительства, в случае сильного образования в ветреных условиях, тепло в помещении будет достаточно быстро уменьшаться. Поэтому необходимо утеплить стены.

Стена с большей прочностью имеет более высокую проницаемость. Это связано с тем, что когда пар входит в строительный материал, влага начинает замерзать при низких температурах, что приводит к постепенному разрушению стен. Поэтому при выборе строительного материала с высокой проницаемостью необходимо правильно установить паровой барьер и теплоизоляционный слой. Чтобы найти паропроницаемость материала, стоит использовать таблицу, которая показывает все значения.

Паропроницаемость и утепление стен

Во время отопления дома необходимо соблюдать правило, согласно которому паровой слой слоев должен подниматься наружу. Благодаря зиме он не будет накапливаться в слоях воды, если в точке росы будет скапливаться конденсат.

Изоляция внутри, хотя многие строители рекомендуют создавать тепло и пароизоляцию снаружи. Это связано с тем, что пар поступает в помещение, и когда стены изолированы изнутри, влага не попадает в строительный материал. Часто для изоляции дома используется экструдированный полистирол. Коэффициент паропроницаемости этих строительных материалов низкий.

Другим методом изоляции является разделение слоев с помощью пароизоляции. Вы также можете применить материал без паров. Пример – изоляция стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло предотвращает проникновение паров, в этом случае кирпичная стена служит аккумулятором влаги, а когда уровень влажности прыгает, она становится помещением для климат-контроля в помещении.

Стоит помнить, что, если вы утепляете стены неправильно, строительные материалы могут потерять свои свойства через короткое время. Поэтому важно знать не только свойства используемых компонентов, но и как их закрепить на стенах дома.

Что определяет выбор изоляции

Нередко утеплители для домовладельцев используют минеральную вату, которая обладает высоким уровнем проницаемости. Согласно международным стандартам, сопротивление паропроницаемости равно 1. Это означает, что минеральная вата в этом отношении практически такая же, как воздух.

Это то, что многие производители минеральной ваты упоминали довольно часто. Часто можно найти ссылку на тот факт, что благодаря установке кирпичной стены с минеральной ватой ее проницаемость не будет уменьшена. Это действительно так. Но стоит отметить, что ни один из стеновых материалов не может производить столько пара, чтобы в помещениях сохранялся нормальный уровень влажности. Также важно отметить, что многие отделочные материалы, используемые для украшения помещений, могут полностью изолировать пространство без потери пара. Следовательно, паропроницаемость стенки значительно снижается. Поэтому минеральная вата оказывает небольшое влияние на парообмен.

Принимая решение о выборе изоляции и различных отделок, стоит помнить, что внешний слой должен быть более паропроницаемым. Если это положение не может быть выполнено, стоит разделить слои с паровым барьером. Это останавливает движение пара структуры и восстанавливает баланс слоев с состоянием окружающей среды. При отделке дома необходимо учитывать паропроницаемость используемых строительных материалов.

Нормирование и расчет сопротивления паропроницанию

Свойство материала пропускать водяные пары называется паропроницаемостью. Прохождение паров зависит от сопротивления материалов паропроницанию Rп. Для отдельного слоя или для однородного ограждения Rп = δ/μ, м2 ч Па/мг, где δ – толщина слоя, м; μ – коэффициент паропроницаемости, мг/(м ч Па). Для многослойных конструкций сопротивление отдельных слоев.

При проектировании необходимо обеспечить условия, чтобы сопротивление Rп ограждающей конструкции в пределах от внутренней поверхности до плоскости возможной конденсации было не менее наибольшего из двух требуемых сопротивлений . Сопротивление определяется из условия недопустимости накопления влаги в ограждения конструкции за годовой период эксплуатации

(28)

Сопротивление определяется из условия ограничения накопления влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха трпR2

(29)

В формулах (28) и (29): ев – упругость водяного пара внутреннего воздуха, Па;

ен – средняя упругость водяного пара наружного воздуха, Па, за годовой период;

Е – упругость водяного пара в плоскости конденсации за годовой период эксплуатации, определяемая как

(30)

где z1, z2, z3 – продолжительность в месяцах зимнего, весеннего и летнего периодов с

учетом того, что к зимнему периоду относятся месяцы со средними температурами воздуха ниже –5 °С, к весенне-осеннему – месяцы со средними температурами от –5 °С до + 5 °С, к летнему – месяцы со средними температурами выше +5 °С;

Е1, Е2, Е3 – упругости водяного пара, Па, принимаемые по температуре в плоскости возможной конденсации, определяемые при средней температуре наружного воздуха соответственно зимнего, весенне-осеннего и летнего периодов;

Rпн – сопротивление паропроницанию, м2 ч Па/мг, части ограждающей конструкции, расположенной между наружной поверхностью и плоскостью возможной конденсации;

zо – продолжительность в сутках периода влагонакопления, принимаемая равной периоду с отрицательными среднемесячными температурами наружного воздуха;

Ео – упругость водяного пара, Па, в плоскости возможной конденсации, определяемая при средней температуре наружного воздуха периода месяцев с отрицательными зимними температурами;

γω – плотность материала увлажняемого слоя, кг/м 3 ;

δω – толщина увлажняемого слоя ограждающей конструкции, м, принимаемая равной 2/3

толщины однослойной стены или толщине теплоизоляционного слоя многослойной конструкции;

Δωср – предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления zо.

где ено – средняя упругость водяного пара наружного воздуха, Па, периода с отрицательным среднемесячными температурами.

Сопротивление паропроницанию чердачного покрытия или части конструкции вентилируемого покрытия, расположенной между внутренней поверхностью покрытия и воздушной прослойкой в зданиях со скатами кровли шириной до 24 м, должно быть не менее требуемого сопротивления , определяемого по формуле

Для помещений с сухим и нормальным влажностным режимом не требуется определять сопротивление паропроницанию однородных, а также двухслойных наружных стен, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м 2 ч Па/мг.

Для защиты от увлажнения теплоизоляционного слоя в покрытиях зданий с влажным и мокрым режимами следует предусматривать пароизоляцию, располагая ее ниже утеплителя и учитывая ее при определении сопротивления паропроницанию покрытия.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector