Ткани растений проводящие механические и выделительные - Домашний мастер Dach-Master.ru
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ткани растений проводящие механические и выделительные

Урок по биологии «Механические и проводящие ткани растений»

Разделы: Биология

Цель: познакомить с особенностями строения и функции механических и проводящих тканей растений как результатом их приспособленности к наземно-воздушной среде.

Задачи:

  • Образовательные:
    • выяснить расположение, строение, значение механических и проводящих тканей; сформировать первое представление о передвижении веществ в растении;
    • установить взаимосвязь строения и функций изучаемых тканей;
    • сформулировать умения анализировать.
  • Развивающие:
    • развивать умение проводить сравнение, анализ, обобщение;
    • продолжить работу по формированию умения определять ткани по микрофотографиям;
    • развивать коммуникативные умения и навыки.
  • Воспитательные:
    • продолжить работу по формированию научного мировоззрения.

Планируемый результат: называть и определять клетки механических и проводящих тканей растений, уметь их описывать.

Основные термины и понятия: механические ткани, волокна, проводящие ткани, древесина, луб, сосуды, ситовидные трубки.

Основное содержание:

1. Клетки механической ткани.
2. Клетки проводящих тканей — древесины и луба. Их расположение, строение, функции.
Оборудование: УМК “Сферы” по биологии; карточки с определениями, микрофотографии гистологических препаратов, плакаты по теме урока.

Структура урока:

Организационный момент – 3 мин.
Изучение нового материала – 23 мин.
Закрепление – 10 — 13 мин.
Домашнее задание – 2 мин.
Рефлексия – 2 мин.
Итог урока – 2 мин.

Время

Содержание урока

Методы и средства обучения

Приветствие, сообщение темы урока, психологический настрой на работу.
Ребята, чтобы нам эффективно потрудиться на данном уроке, необходимо настроиться на работу. Посмотрите на доску. Там написан эпиграф к нашему уроку. Давайте его хором прочтем.
«Не стыдно не знать,
Стыдно не учиться»

– Как вы понимаете данное высказывание?
– Вы с ним согласны?
Так давайте сегодняшний наш урок мы проведем под этим девизом.
Перед вами на столах лежат цветные карточки: красная, синяя, зелёная.
Посмотрите на них внимательно и выберите ту, которой соответствует ваше эмоциональное настроение именно сейчас. Красный цвет – вы полны энергии, готовы активно работать. Зелёныё цвет – вы спокойны. Синий цвет – вы испытываете чувство тревоги, беспокойства.
Итак, не будем терять время и перейдем к работе. Запишем сегодняшнее число.
Обратите внимание на тему урока (на доске).
Как вы думаете, чем мы будем сегодня заниматься на уроке? (Ставят цель урока)

Вступительное слово учителя

Вопрос к классу

Учитель делает вывод о психологическом состоянии учащихся.

Создание проблемной ситуации.

Откройте свои учебники и прочитайте мне основные вопросы, которые нам предстоит изучить сегодня на уроке:

  • Какое строение имеет ткань, выполняющая опорную функцию у растений.
  • Как устроены ткани растений, по которым передвигаются вода и питательные вещества.

Для того чтобы Вам было легче усвоить новый материал, вспомните из ранее изученного и ответьте на мои вопросы:

  • Что такое ткань?
  • Какие ткани растений вы уже знаете?
  • Какие функции выполняют покровные ткани?
  • Как устроены устьица?
  • Какие функции они выполняют?

Каждый наблюдал, как тонкая соломина, поддерживая тяжелый колос, раскачивается на ветру, но не ломается.

  • Скажите за счет чего это происходит?

Огромное значение в жизни наземных растений играют механические ткани.
А) Прочность придают растению механические ткани.
Механические ткани— опорные ткани растения, обеспечивающие его прочность (медиаобъект из словаря).
Они служат опорой тем органам, в которых находятся. Клетки механических тканей имеют утолщенные оболочки.

  • В каких органах растения могут находится механические ткани?

В листьях и других органах молодых растений клетки механической ткани живые. Такая ткань располагается отдельными тяжами под покровной тканью стебля и черешков листьев, окаймляет жилки листьев.
Клетки живой механической ткани легко растяжимы и не мешают расти той части растения, в которой находятся.
Благодаря этому органы растений действуют подобно пружинам. Они способны возвращаться в исходное состояние после снятия нагрузки. Каждый видел, как вновь поднимается трава, после того как по ней прошел человек.

  • Перечислите мне органоиды клетки, которые вы увидели на рисунке.

Опорой частям растения, рост которых завершен, также служит механическая ткань, однако зрелые клетки этой ткани мертвые. К ним относят лубяные и древесные волокна — длинные тонкие клетки, собранные в тяжи или пучки.

  • Какие органоиды присутствуют в мертвых клетках механических тканей?
  • Волокна придают прочность стеблю.
  • Скажите мне в каких частях растения можно найти короткие мертвые клетки механической ткани (их называют каменистыми)?

Образуют семенную кожуру, скорлупу орехов), косточки плодов, придают мякоти груш крупитчатый характер.

  • Посмотрите, какие интересные факты из жизни растений Вы можете прочитать в биологическом блокноте на стр. 36?

Итак, давайте подведем итог по механическим тканям:

  • Какие бывают виды механической ткани?
  • В каких органах растения находятся живые механические ткани?
  • Где находятся каменистые клетки?
  • В чем заключается функция механической ткани?

Мы с Вами изучаем ткани растений, давайте представим себе, что мы…

Осенние листочки лежали на траве
И ветер, разбойник подул во дворе
Листья взлетели и стали кружить
Кружили, летели,
Устали и сели. (садятся на места).

Итак, продолжим знакомство с тканями растений.

  • Скажите мне с какой еще тканью растения мы должны познакомиться сегодня на уроке?

Б) Во всех частях растения находятся проводящие ткани.

  • В чем заключается роль проводящей ткани?

Проводящие ткани — растительные ткани организма, служащие для транспорта воды, минеральных и органических веществ.
Они обеспечивают перенос воды и растворенных в ней веществ.

  • Какие среды жизни Вы знаете?
  • В каких средах жизни находится тело наземных растений?
  • Каким образом растение будет осуществлять процесс питания?
  • Как поступает вода и минеральные вещества из корня к листьям?
  • Какие вещества образуются в процессе фотосинтеза?
  • На какие нужды растения тратятся эти вещества?
  • Почему растворенные органические вещества и минеральные вещества не смешиваются?

Проводящие ткани сформировались у растений в результате приспособления к жизни на суше. Тело наземных растений находится в двух средах жизни — наземно-воздушной и почвенной. В связи с этим возникли две проводящие ткани – древесина и луб.
По древесине в направлении снизу вверх (от корней к листьям) поднимаются вода и растворенные в ней минеральные соли.
Давайте посмотрим, как это происходит в природе.

  • Вы просмотрели анимацию. Кто мне может дать определение древесине?

Поэтому древесину называют водопроводящей тканью.
Древесина – проводящая ткань растений, состоящая из сосудов, образованных стенками мертвых клеток.

Луб — это внутренняя часть коры.
По лубу в направлении сверху вниз (от листьев к корням) передвигаются органические вещества.
Древесина и луб образуют в теле растения непрерывную разветвленную систему, соединяющую все его части.

Главные проводящие элементы древесины — сосуды. Они представляют собой длинные трубки, образованные стенками мертвых клеток. Сначала клетки были живыми и имели тонкие растяжимые стенки. Затем стенки клеток одревеснели, живое содержимое погибло. Поперечные перегородки между клетками разрушились, и образовались длинные трубки. Они состоят из отдельных элементов и похожи на бочонки без дна и крышки. По сосудам древесины свободно проходит вода с растворенными в ней веществами.
Проводящие элементы луба — живые вытянутые клетки. Они соединяются концами и образуют длинные ряды клеток — трубки. В поперечных стенках клеток луба имеются мелкие отверстия (поры). Такие стенки похожи на сито, поэтому трубки называют ситовидными.
По ним передвигаются растворы органических веществ от листьев ко всем органам растения. Луб — проводящая ткань растений, состоящая из тонкостенных живых клеток, образующих длинные ряды (ситовидные трубки).
Посмотрите какие интересные факты из жизни растений Вы можете прочитать в биологическом блокноте на стр. 37?

Работа с тестом учебника стр. 36

Фронтальная беседа с классом по вопросам стр. 35 и стр. 36.

Вопрос к классу

Работа с ключевыми словами.

Вопрос к классу.

Просмотр анимации: «Месторасположение механических тканей»

Работа с учебником на стр. 36 рис. 3.8. «Строение клеток живой механической ткани (поперечный срез)».

Работа с учебником на стр. 36 рис. 3.10. «Мертвые клетки механической ткани (поперечный разрез)».

Вопрос к классу
Просмотр анимации: «Примеры механических тканей».
Вопрос к классу.

Работа с учебником рис 3.9. стр. 36
Просмотр анимации: «Расположение мертвой механической ткани».
Работа с рубрикой: «Биологический блокнот».

Беседа с учащимися и поэтапное заполнение схемы № 1 «Механические ткани» на доске и в тетради.

Физкультминутка (расслабляющая пауза): в целях здоровьесбережения и эмоциональной разрядки.

Вопрос к классу.

Вопрос к классу.

Вопрос к классу.

Просмотр анимации: «Движение воды и минеральных веществ»

Работа с ключевыми словами.

Просмотр анимации: «Движение органических веществ по лубу»

Рассказ учителя с поэтапным заполнением схемы № 2 «Проводящая ткань» на доске и в тетради.

Работа с рис. 3.11 «Строение сосудов древесины» на стр. 37.

Работа с рисунком 3.12 «Строение ситовидной трубки (продольный разрез) стр. 37

Работа с ключевыми словами.

Работа с рубрикой: «Биологический блокнот».

1) Определите тип ткани по описанию, приведенному ниже.
Эта ткань характерна для растений. Клетки ее живые. Их форма — вытянутая. Соседние клетки соединены друг с другом, стенки между ними похожи на сито, за что и получили свое название. По клеткам этой ткани происходит передвижение органических веществ от листьев ко всем тканям и органам растения.
Название ткани: ___________________________.
Название клеток: __________________________.

2) Рассмотрите фотографии и ответьте на вопросы.

Какой тканью образованы покровы органов растений, представленных на фотографиях?
————————————————————
Какие функции выполняет эта ткань?
Живыми или мертвыми клетками образована эта ткань?
Фотографии органов каких растений могли бы дополнить иллюстративный ряд для этого задания?

3) В рабочих листах выполните задания 1- 4, которые предполагают один вариант ответа. 5 задание предполагает два варианта ответа.

Будьте внимательны и каждое задание выполняйте самостоятельно. Желаю Вам успеха!

1. Ткань, придающая прочность и опору органам растения:

а) покровная
б) проводящая
в) механическая

2. Передвижение воды с минеральными солями в растении происходит:

а) по древесине
б) по лубу

3. Передвижение органических веществ в растении происходит:

а) по древесине
б) по лубу

4. Стеблю растения придают прочность:

а) ситовидные трубки проводящей ткани
б) волокна механической ткани
в) сосуды проводящей ткани

5. Волокна, каких растений человек использует в своей жизни:

а) льна
б) джута
в) крапивы
г) ромашки

Ответы: 1 – в, 2 – а, 3 – б, 4 – б, 5 – а, б.

Вы выполнили тест? Прошу Вас проверить правильность выполнения данного задания. Проверили?
Выставите оценку, исходя из следующих параметров:

«5» – все правильно (100%)
«4» – 1-2 ошибки (80 – 60%)
«3» – 3 ошибки (50 – 30%)
«2» – 4 и более ошибок (менее 20%)

Выполнение задания в тетради-тренажере с. 26 № 2

Выполнение задания в тетради-тренажере с. 26 № 2

Выполнение теста на листах (один остается у ученика для самооценки, второй затем проверяется учителем для проверки объективности оценки) и за компьютером.

Читать еще:  Как штукатурить стены цементом подробная инструкция

Запись домашнего задания на доске и в дневнике.

Вернемся к вопросам, которые были поставлены в начале урока. Мы ответили на них?
Учитель подводит учащихся к выводу по уроку:
В живых организмах прослеживается связь строения и его функции.
Выставление оценки всем учащимся, учитывая индивидуальную работу, фронтальную работу во время беседы, оценки по тесту.

Вопрос к классу.

Формулировка вывода по уроку.

Вопросы рефлексии:
Мы начали заниматься по новому учебнику. Чем он отличается от других учебников? Нашим гостям будет интересно узнать Ваше мнение. Необходимы ли были для объяснения материала электронного приложения, или можно было изучить данную тему, пользуясь только учебником?
Понравился ли вам сегодняшний урок? Если да, то чем? Выберите из карточек ту, которой соответствует ваше эмоциональное настроение именно сейчас. В завершении предложить ребятам поблагодарить друг друга за успешное сотрудничество торжественным рукопожатием.
Всем спасибо. Урок закончен.

Вывод об эмоциональном состоянии учеников после урока

Ткани растений

Ткань – это группа клеток, сходных по строению, происхождению и выполняемым функциям. Из тканей образованы органы и системы органов. Разные органы растений образуют единый организм.

У растений различают 6 видов тканей: образовательная, покровная, основная, опорная, проводящая и выделительная.

Образовательная ткань (меристема) имеет клетки с тонкими оболочками, плотно прилегающими друг к другу. Подразделяются на: верхушечные, боковые, вставочные, раневые.

Верхушечная меристема – на верхушке побега (апикальная) или кончике корня.

Боковые меристемы – камбий и пробковый камбий (феллоген).

Вставочные меристемы – в основаниях междоузлии стеблей злаков.

Раневые меристемы – в любом участке, где имеется повреждение.

Клетки образовательных тканей постоянно делятся. За счет увеличения числа клеток и их роста растения растут и развиваются. Со временем клетки утрачивают способность делиться. Клетки превращаются в постоянные ткани. К ним относятся покровные, основные, проводящие и др.

Покровная ткань (эпидерма, перидерма, корка) формируется на поверхности органов. Она защищает растение от высыхания, от неблагоприятных условий среды и механических повреждений. Клетки кожицы – эпидермис – образуются на молодых листьях и стеблях. Со временем развивается пробка. Это многослойная ткань состоит из мёртвых, плотно прилегающих друг к другу клеток. Кора – это наружная часть ствола деревьев, защищающая от излишнего испарения, перегрева, вымерзания, ожога солнечными лучами.

Основная ткань (паренхима) состоит из живых клеток и образует основу всех органов растения. Основная ткань делится на:

фотосинтезирующую, запасающую, водоносную, воздухоносную.

Фотосинтезирующая ткань содержит хлоропласты, в которых происходит фотосинтез. Встречается в листьях и молодых побегах.

Запасающая ткань стеблей, луковиц, листьев, корнеплодов, корневищ участвует в накоплении питательных веществ. Все межклеточное пространство относится к этому виду тканей.

Водоносная ткань содержится в стеблях и листьях пустынных растений. Воздухоносная ткань рыхлая, хорошо развиты межклетники, благодаря которым кислород доставляется к различным частям растений.

Опорная, или механическая ткань (склеренхима и колленхима) образована длинными клетками с толстыми одревесневающими стенками и отмершим содержимым. Выполняет у растений роль каркаса или опоры. Она находится в стеблях, листьях и плодах. Опорная ткань придаёт прочность и упругость всем органам растений. К опорным тканям относятся: каменистые клетки, содержащиеся в мякоти плодов груши, айвы, рябины, в семенах пальмы, в косточках вишни, сливы, абрикоса и персика.

В органах молодых растений опорная ткань развивается не сразу. Плотный эпидермис надежно защищает от разных воздействий окружающей среды. По мере созревания оболочка становится твердой, стенки утолщаются и одревеснеют, превращаясь в лубяные волокна. В древесине находят древесные волокна.

Проводящая ткань обеспечивает передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани – ксилему (древесину) и флоэму (луб).

Ксилема – это главная водопроводящая ткань высших сосудистых растений. Она обеспечивает передвижение воды с растворенными в ней минеральными веществами от корней к листьям и другим частям растения (восходящий ток). В состав ксилемы входят сосуды (трахеи) и мертвые клетки с одревесневшими оболочками (трахеиды), древесинная основная (паренхима) и механическая ткань.

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью и состоит из ситовидных трубок с клетками-спутницами.

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы – проводящие пучки.

Выделительные ткани растений очень разнообразны: железистые клетки, нектарники, млечные сосуды (млечники), смоляные ходы, переваривающие железки насекомоядных растений. Эти ткани сильно различаются по строению и размещению в теле растения. Растения выделяют очень разнообразные в химическом отношении вещества.

Механическая ткань растений: особенности строения и функции

Так же, как и у животных, в телах растений имеются различные ткани. Из них построены органы, которые, в свою очередь, формируют системы. Структурная единица в целом все та же — клетка.

Однако ткани растений и животных различаются между собой и по строению, и по выполняемым функциям. Поэтому попробуем разобраться, что собой представляют эти структуры у представителей флоры. Более подробно рассмотрим, что такое механическая ткань растений.

Ткани растений

Всего можно выделить 6 групп тканей в растительном организме.

  1. Образовательная включает в себя раневые, верхушечные, боковые и вставочные типы. Предназначена для восстановления структуры растений, различного вида роста, принимает участие в формировании других тканей, образует новые клетки. В зависимости от выполняемой функции становится понятно, где будут локализованы участки с образовательной тканью: черешки листьев, междоузлия, кончик корня, верхняя часть стебля.
  2. Основная состоит из разных видов паренхимы (столбчатая, воздухоносная, губчатая, запасающая, водоносная), а также фотосинтезирующей части. Функция соответствует названию: запасание воды, накопление запасных питательных веществ, фотосинтез, газообмен. Локализация в листьях, стеблях, плодах.
  3. Проводящие ткани — ксилема и флоэма. Основное назначение — транспортировка минеральных веществ и воды к листьям и стеблю и обратная доставка питательных соединений к местам накопления. Располагаются в сосудах древесины, специализированных клетках луба.
  4. Покровные ткани включают в свой состав три основных разновидности: это пробка, корка, эпидерма. Роль их в первую очередь — защитная, а также транспирация и газообмен. Расположение в теле растения: поверхность листьев, коры, корня.
  5. Выделительные ткани осуществляют выработку сока, нектаров, продуктов метаболизма, влаги. Располагаются в специализированных структурах (нектарниках, млечниках, волосках).
  6. Механическая ткань растений, ее строение и функции будут рассмотрены ниже подробнее.

Механические ткани: общая характеристика

Сложные и неоднородные погодные условия, климатический катарсис, не всегда мягкие перепады природы — от всего этого человека защищает жилище. И часто таким убежищем для животных становятся именно растения. А кто же спасет их самих? Благодаря чему они способны выдерживать и шквальный ветер, и землетрясения, извержения вулканов и град, снегопады и тропические ливни? Оказывается, выстоять им помогает включенная в состав структура — механическая ткань.

Такая структура не всегда равномерно распределена у одного и того же растения. Также неодинаково ее содержание и у разных представителей. Но в той или иной степени она есть у всех. Механическая ткань растений имеет свое особое строение, классификацию и выполняемые функции.

Функциональная значимость

Одно название данной структуры говорит о роли и значении, которое она имеет для растений,- механическая прочность, защита, опора. Часто механическая ткань приравнивается к арматуре. То есть это своеобразный скелет, остов, придающий опору и прочность всему растительному организму.

Данные функции механической ткани чрезвычайно важны. Благодаря их наличию растение способно переносить сильнейшие погодные ненастья, при этом сохраняя целостность всех частей. Часто можно видеть, как деревья раскачиваются от сильных порывов ветра. Однако не ломаются, проявляя чудеса пластичности и прочности. Это происходит благодаря тому, что работают механические свойства тканей. Также можно видеть и устойчивость кустарников, высоких трав, полукустарников, небольших деревьев. Все они удерживаются в нормальном состоянии, словно стойкие оловянные солдатики.

Конечно, это объясняют особенности строения клеточных структур и разновидности механических тканей. Можно разделить их на группы.

Классификация

Различают три главных типа таких структур, каждая из которых имеет свои особенности строения механической ткани.

  1. Колленхима.
  2. Склеренхима.
  3. Склереиды (часто рассматривается как часть склеренхимы).

Каждая из перечисленных тканей может формироваться как из первичной, так и из вторичной меристемы. Все клетки механической ткани имеют толстые прочные клеточные стенки, что во многом и объясняет способность выполнять перечисленные функции. Содержимое каждой клетки может быть как живым, так и мертвым.

Колленхима и ее строение

Эволюция данного типа структуры идет от основных тканей растений. Поэтому чаще всего колленхима содержит пигмент хлорофилл и способна к осуществлению фотосинтеза. Формируется данная ткань только в молодых растениях, выстилая их органы сразу под покровной, иногда чуть глубже.

Обязательное условие для колленхимы — тургор клеток, только в этом случае она способна выполнять возложенные на нее функции арматуры, опоры. Такое состояние возможно, так как все клетки данной ткани — живые, растущие и делящиеся. Оболочки очень утолщенные, однако сохраняются поры, через которые и происходит забор влаги и установка определенного тургорного давления.

Также строение механических тканей данного типа подразумевает несколько типов сочленения клеток. По этому признаку принято выделять три вида колленхимы.

  1. Пластинчатая. Клеточные стенки утолщены достаточно равномерно, располагаются плотно друг к другу, параллельно стеблю. Вытянутые по форме (пример растения, содержащего этот тип ткани,- подсолнечник).
  2. Уголковая колленхима — оболочки утолщены неравномерно, в углах и середине. Смыкаются между собой именно этими частями, образуя небольшие пространства (гречиха, тыква, щавель).
  3. Рыхлая — название говорит за себя. Клеточные стенки утолщенные, но соединение их — с большими межклеточными пространствами. Часто выполняет фотосинтезирующую функцию (красавка, мать-и-мачеха).

Еще раз следует указать на то, что колленхима — это ткань только молодых, одногодовалых растений и их побегов. Основные места локализации в теле растения — черешки и главные жилки, в стебле по бокам в форме цилиндра. Данная механическая ткань содержит только живые, неодревесневшие клетки, не препятствующие росту растений и их органов.

Выполняемые функции

Помимо фотосинтезирующей, можно назвать также функцию опоры как основной. Однако она играет не такую большую роль в этом, как склеренхима. Тем не менее прочность колленхимы на разрыв сравнима с прочностью металлов (алюминия, например, и свинца).

Кроме того, функции механической ткани данного типа объясняются также способностью формировать вторичные одревесневающие оболочки в старых органах растений.

Склеренхима, типы клеток

В отличие от колленхимы, клетки данной ткани имеют чаще всего одревесневшие оболочки, сильно утолщенные. Живое содержимое (протопласт) со временем отмирает. Часто клеточные структуры склеренхимы пропитываются особым веществом — лигнином, повышающим их прочность во много раз. Прочность на излом у склеренхимы сравнима с параметрами строительной стали.

Читать еще:  Внутреннее утепление стен лоджии какой материал надежнее

Основные типы клеток, входящих в состав такой ткани, следующие:

  • волокна;
  • склереиды;
  • структуры, входящие в состав проводящих тканей, ксилемы и флоэмы — лубяные волокна и древесинные (либриформа).

Волокна представляют собой удлиненные и заостренные кверху прозенхимные структуры с сильно утолщенными и одревесневшими оболочками, пор очень мало. Локализуются в местах окончания ростовых процессов растения: междоузлиях, стебле, центральной части корня, черешках.

Лубяные и древесинные волокна имеют большое значение как сопровождающие проводящих тканей, окружающие их.

Особенности строения механической ткани склеренхимы состоят в том, что все клетки мертвые, с прочно сформировавшейся древесной оболочкой. Все вместе они дают колоссальную устойчивость растениям. Формируется склеренхима из первичной меристемы, камбия и прокамбия. Локализуется в стволах (стеблях), черешках, корнях, цветоножках, цветоложе, плодоножках и листьях.

Роль в растительном организме

Выполняемая функция механической ткани склеренхимы очевидна — обеспечение целостного крепкого каркаса, обладающего достаточной прочностью, эластичностью и силой, чтобы выдерживать динамические и статические воздействия со стороны массы кроны (у деревьев) и природных катаклизмов (у всех растений).

Функция фотосинтеза для склеренхимных клеток нехарактерна вследствие отмирания их живого содержимого.

Склереиды

Данные структурные элементы механической ткани образуются из обычных тонкостенных клеток путем поэтапного отмирания протопласта, склерификации (одревеснения) оболочек и их многократного утолщения. Развиваются такие клетки двумя способами:

  • из основной меристемы;
  • из паренхимы.

Убедиться в прочности и жесткости склереид можно, обозначив места их локализации в растениях. Из них состоит скорлупа орехов, косточки плодов.

По форме эти структуры могут быть весьма различны. Так, выделяют:

  • короткие округлые каменистые клетки (брахисклереиды);
  • разветвленные;
  • сильно удлиненные — волокнистые;
  • остеосклереиды — по форме напоминают человеческие берцовые кости.

Часто такие структуры встречаются даже в мякоти плодов, что защищает их от поедания различными птицами и животными. Склереиды всех типов составляют особенности механических тканей, помогают им выполнять опорные функции.

Значение для растений

Роль таких клеток заключается не только в арматурных функциях. Также склереиды помогают растениям:

  • защищать семена от перепадов температур;
  • не допускать поражения плодов бактериями и грибами, а также укусами животных;
  • формировать в комплексе с другими механическими тканями полноценный устойчивый механический каркас.

Присутствие механических тканей у разных растений

Распределение таких типов тканей неодинаково у различных представителей флоры. Так, например, меньше всего склеренхимы содержат низшие водные растения — водоросли. Ведь для них функцию опоры играет вода, ее давление.

Также не слишком одревесневают и запасаются лигнином тропические растения, все представители влажных мест обитания. А вот обитатели засушливых условий механическими тканями обзаводятся по максимуму. Это отражается и в их экологическом названии — склерофиты.

Колленхима больше характерна для однолетних двудольных представителей. Склеренхима же, напротив, большей частью формируется в однодольных многолетних травах, кустарниках и деревьях.

ВЫДЕЛИТЕЛЬНЫЕ, МЕХАНИЧЕСКИЕ И ПРОВОДЯЩИЕ РАСТИТЕЛЬНЫЕ ТКАНИ

1. Секреторные ткани и их классификация.

2. Механические ткани.

3. Проводящие ткани.

4. Типы проводящих пучков.

1. Секреторные ткани и их классификация

Секреторными (выделительными) тканями принято называть структуры, выделяющие терпены, полисахариды, соли, воду и другие вещества. Иногда эти вещества представляют собой конечные продукты обмена, иногда – выполняют функцию защиты от насекомых, от поедания животными, предохраняют от загнивания древесины. Различают наружные и внутренние

Перечислим наружные секреторные ткани.

1.Железистые волоски представляют собой трихомы, или эмергенцы (производные эпидермиса и лежащих под ним тканей), и являются обычно многоклеточными структурами. Выполняют выделительную и защитную функцию.

2. Гидатоды выделяют воду и соли на поверхность листа из его внутренних частей. Этот процесс называют гуттацией. Гидатоды обычно располагаются по краю листа. Гуттация происходит при временном избыточном поступлении воды и затрудненной транспирации (по утрам – у земляники, манжетки).

3. Нектарники выделяют сахаристую жидкость, привлекающую насекомых. Обычно располагаются в цветках. 4. Осмофоры – желёзки, продуцирующие аромат у многих растений. Выделяют летучий секрет, представленный в основном эфирными маслами. Служат для привлечения насекомых-опылителей.

5. Пищеварительные желёзки встречаются у насекомоядных растений и выделяют пищеварительные ферменты, кислоты и другие вещества, с помощью которых перевариваются пойманные животные.

Перечислим внутренние секреторные ткани.

1. Секреторные идиобласты – выделительные клетки, рассеянные среди других тканей и накапливающие различные вещества (оксалат кальция, терпены, слизи, таннины). Оболочка выделительных клеток утолщается, в ней для изоляции ядовитого секрета от окружающих клеток откладывается суберин. Эфирномасляные идиобласты встречаются у лавровых, перечных.

2. Вместилища выделений встречаются у растений разных систематических групп, они разнообразны по форме, величине, происхождению. По происхождению выделяют лизигенные и схизогенные вместилища.

Лизигенные возникают в результате растворения группы клеток, обособившихся внутри какой-либо ткани. Их деление приводит к образованию небольшого очага мелких клеток, вырабатывающих секрет. Впоследствии оболочки растворяются – и на их месте формируется полость, заполненная секретом. Лизигенные вместилища встречаются в кожуре цитрусовых, листьях эвкалипта.

Схизогенные возникают из межклетников при отделении клеток друг от друга. При этом клетки, прилегающие к вместилищу, становятся эпителиальными, т. е. вырабатывают и выделяют в полость экскреторное вещество. Эпителий изолирует секрет от живых тканей. Схизогенные вместилища хорошо развиты у хвойных (смоляные ходы), некоторых сложноцветных, зонтичных.

3. Млечники – клетки или ряды клеток, содержащие в вакуолях млечный сок (латекс). Он может содержать смолы, каучук, эфирные масла, алкалоиды. Млечники бывают двух типов: членистые и нечленистые.

Первые возникают из нескольких отдельных млечных клеток, которые в местах соприкосновения друг с другом растворяют оболочки. Их протопласты и вакуоли сливаются в единую разветвленную систему. Членистые млечники найдены у сложноцветных, маковых и многих других. Нечленистые млечники представляют собой одну гигантскую клетку, которая непрерывно растет, удлиняется и ветвится. Такими млечниками обладают молочайные, тутовые.

2. Механические ткани

Механические ткани обусловливают прочность растения. Стенки клеток, слагающих эти ткани, утолщены. Механические ткани чаще всего выполняют свое назначение в сочетании с остальными тканями растения, образуя их арматуру. К данному типу тканей относятся колленхима и склеренхи-

Колленхима – это механическая ткань, являющаяся первичной и служащая для укрепления молодых стеблей и листьев во время роста. Клетки колленхимы живые, с неравномерно утолщенными неодревесневшими стенками, вследствие чего они способны растягиваться при росте органа. В зависимости от характера утолщения стенок различают уголковый (оболочка утолщается в углах, где сходятся 3–5 клеток), пластинчатый (тангенциальные стенки утолщаются сплошными параллельными слоями) и рыхлый (утолщение оболочек происходит на участках, примыкающих к межклетникам) типы колленхимы.

Склеренхима состоит из мертвых клеток с равномерно утолщенными и, как правило, лигнифицированными оболочками. Ее слагают два типа клеток: склеренхимные волокна и склереиды.

Склеренхимные волокна образованы мертвыми прозенхимными клетками с острыми концами и толстыми оболочками, имеющими простые поры.

Склереиды представляют собой мертвые клетки разнообразной формы с очень толстыми оболочками, пронизанными поровыми каналами. Клеточные стенки склереид одревесневают, в них откладываются известь, кремнезем, суберин, вследствие чего протопласт отмирает. Встречаются в плодах, листьях, стеблях, где располагаются поодиночке или группами (например, в мякоти плода груши). Склереиды, располагающиеся плотно, без межклетников, образуют косточки плодов сливы, вишни, абрикоса, скорлупу грецкого ореха.

Наряду с волокнами и склереидами, составляющими склеренхиму, в проводящей ткани высших растений имеются клетки, также специализирующиеся на выполнении опорной функции. Это древесинные (волокна либриформа) и лубяные волокна. Они отличаются от волокон типичной склеренхимы происхождением; поэтому рассматриваются как структурные элементы тех тканей, в которых образовались.

Высшие растения в процессе эволюции выработали способность противостоять различным механическим нагрузкам. Механические ткани выполняют свою функцию только в сочетании с другими. В соответствии с теорией В.Ф.Раздорского (1883– 1955), тело растения можно сравнить с сооружением из железобетона, в котором оба материала – железо и бетон – дополняют друг друга.

Железная арматура (каркас) препятствует разрыву, а бетон (заполнитель) препятствует раздавливанию и не допускает смятия арматуры. Таким образом, вся конструкция обладает значительно большей прочностью, чем железо и бетон, взятые порознь. В теле растения роль арматуры выполняют тяжи колленхимы и склеренхимы, а заполнителем являются остальные ткани, что придает растительным органам удивительную прочность.

Стебли подвергаются изгибам в различных направлениях; поэтому механическая ткань в данном органе отнесена к периферии, а центр занят либо запасающей паренхимой, либо полостью. Корень выполняет другую механическую функцию: он «заякоривает» растение в почве и противодействует силам, стремящимся выдернуть его, т. е. противостоит разрыву. Поэтому в корне целесообразно размещение механических тканей в центре.

3. Проводящие ткани

Проводящие ткани выполняют функцию транспортировки по растению питательных веществ. Они образуют в теле растения непрерывную разветвленную систему, соединяющую все его органы. Ткань, по которой передвигаются вода и растворенные в ней минеральные вещества, называется ксилемой. Транспорт продуктов ассимиляции осуществляет второй тип проводящей ткани – флоэма.

Ксилема, так же, как и флоэма, является сложной тканью и включает три типа клеток: трахеальные элементы, механические волокна и клетки паренхимы.

Трахеальные элементы (трахеиды, сосуды) – это мертвые клетки вытянутой формы с неравномерно утолщенными лигнифицированными оболочками, пронизанными порами. Одревеснение оболочек происходило постепенно и способствовало укреплению стенок водопроводящих элементов. У примитивных организмов на тонкостенных оболочках сначала появлялись кольчатые, затем спиральные утолщения и возникали кольчатые и спиральные трахеальные элементы.

В процессе эволюции одревеснение распространилось почти на всю оболочку, но в ней сохранились тонкостенные участки (поры), имеющие округлую или продолговатую форму. Так возникли точечные и лестничные трахеальные элементы, являющиеся разновидностями порового типа утолщения. Трахеиды являются основными водопроводящими элементами плаунов, хвощей, папоротников, голосеменных растений. Первичная клеточная оболочка на клеточных оболочках у них не нарушена; поэтому передвижение воды осуществляется путем фильтрации через поры.

Сосуды характерны для покрытосеменных растений. Членики сосудов располагаются один под другим, образуя длинную полую трубку. Основное отличие сосудов от трахеид состоит в том, что их поперечная перегородка имеет сквозные отверстия (перфорации), вследствие чего значительно увеличивается скорость передвижения воды.

Членики сосудов возникают из живых клеток, которые имеют тонкие оболочки и растут в длину и ширину. Затем начинает откладываться вторичная оболочка (не откладывается в местах образования пор и перфораций). Поперечные стенки члеников сосудов в местах перфораций растворяются, начинается проведение воды.

Сосуды являются важнейшим эволюционным приобретением растений. Они начали появляться в независимых эволюционных группах (у селягинеллы, орляка, эфедры) и окончательно закрепились у покрытосеменных, явившись важным фактором их процветания и приспособления к сухопутным условиям. Скорость передвижения воды по сосудам у некоторых высоких деревьев может достигать 8 м/ч (в среднем – 1 м/ч).

Древесинные волокна (волокна либриформа) выполняют опорную и защитную функции для трахеальных элементов и паренхимы. Они эволюционно возникли из трахеид, их преобразование шло в направлении потери проводящей функции, преобразования окаймленных пор в простые и повышения механической прочности.

Древесинная паренхима часто окружает трахеальные элементы. Она регулирует поступление и скорость движения растворов и запасает питательные вещества. Собранные в горизонтальные полосы участки паренхимных клеток образуют так называемые древесинные лучи, передающие растворы в радиальном направлении. Рассеянная среди трахеальных элементов паренхима, в виде вертикальных тяжей тянущаяся вдоль осевых органов, называется древесинной, или тяжевой. Клетки паренхимы могут образовывать вы-росты в полость сосудов – тиллы. Тиллообразование усиливает механическую прочность центральной части стволов деревьев.

По происхождению и заложению различают первичную и вторичную ксилемы. Первичная возникает из прокамбия. В ней выделяют протоксилему и появляющуюся позже метаксилему. Первичная часто состоит из трахеаль ных элементов примитивного строения (с кольчатым, спиральным утолщением клеточных оболочек). Вторичная образуется из камбия и называется древесиной.

Формирование элементов в первичной ксилеме из прокамбия может идти тремя путями:

1)центростремительно (первые элементы протоксилемы образуются на периферии, а метаксилема – в центре). Этот тип образования первичной ксилемы называется экзархным;

2) центробежно (вычленение клеток ксилемы из прокамбия идет от центра к периферии). В этом случае выделяют две его модификации:

центрархный тип ( прокамбий расположен в виде одного пучка в центре и откладывает проводящие элементы наружу);

эндархный (прокамбий расположен в виде колечка).

3) мезархный (первые элементы ксилемы закладываются в центральной части прокамбиального тяжа, а последующее появление других элементов идет и к центру, и к периферии).

Флоэма – это ткань сосудистых растений, проводящая органические вещества. Первичная флоэма, которую подразделяют на протофлоэму и ме тафлоэму, дифференцируется из прокамбия, вторичная (луб) является производной камбия. В состав флоэмы входят ситовидные элементы, клетки-

спутницы, лубяные волокна и клетки паренхимы.

Ситовидные элементы – это живые прозенхимные клетки, выполняющие проводящую функцию. На их стенках находятся ситовидные поля – участки клеточной оболочки, пронизанные многочисленными отверстиями, через которые посредством плазмодесм сообщаются протопласты соседних ситовидных элементов. Различают два типа ситовидных элементов: ситовидные клетки (длинные с заостренными концами, ситовидные поля – по продольным стенкам, лишены клеток-спутниц, ядро уменьшено или фрагментирует) и ситовидные трубки (состоят из коротких члеников, расположенных друг над другом, ситовидные поля – на поперечных стенках, образующих ситовидную пластинку, имеют клетки-спутницы и в зрелом состоянии лишены ядра). Ситовидные трубки функционально более совершенны, чем ситовидные клетки, и характерны для покрытосеменных растений.

Рассмотрим гистогенез ситовидной трубки. Клетка меристемы, дающая начало членику ситовидной трубки, делится продольно на две клетки разных размеров. Большая клетка превращается в членик ситовидной трубки, меньшая – в клетку-спутницу (или в 2–3 клетки в случае дополнительного деления). Клетка ситовидной трубки растягивается, ее оболочка утолщается, но не одревесневает. На концах образуются ситовидные пластинки с перфорациями на месте плазмодесм. На стенках этих отверстий откладывается полисахарид каллоза. По окончании деятельности трубки она закупоривает перфорацию. В протопласте появляются округлые тельца флоэмного белка (Ф — белка); позже тельца теряют округлые очертания и образуют тяжи, проходя через перфорации из клетки в клетку. Ф-белок способствует проведению веществ из одной клетки в другую. Далее разрушаются тонопласт и ядро, клеточный сок смешивается с гиалоплазмой, однако ситовидная трубка остается живой и проводит ассимиляты.

Важная роль в проведении органических веществ принадлежит клеткам-спутницам, имеющим многочисленные плазматические связи с ситовидными трубками. Кроме того, предполагается, что клетки-спутницы участвуют в регуляции метаболизма ситовидных трубок, лишенных в зрелом состоянии ядра. В клетках лубяной паренхимы протекают обменные реакции и запасаются некоторые эргастические вещества. Лубяная паренхима подразделяется на две системы: вертикальную и горизонтальную (лубяные лучи).

4. Типы проводящих пучков

В большинстве случаев ксилема и флоэма расположены рядом и образуют проводящие пучки. Выделяют несколько типов пучков (рис. 5, а–е). Наиболее распространены коллатеральные открытые пучки, в которых между флоэмой и ксилемой залегает камбий (большинство двудольных), причем в стеблях флоэма обращена к периферии, в листьях – к нижней стороне пластинки. Биколлатеральный открытый проводящий пучок (например, у тыквы) обладает добавочно внутренней флоэмой. Закрытые пучки, напротив, лишены камбия и характерны для растений, не имеющих вторичного утолщения (однодольных). В концентрических пучках или ксилема окружает флоэму (амфивазальные пучки), или наоборот (амфикрибральные). В радиальных пучках флоэма и ксилема лежат по разным радиусам и разделены паренхимой.

Рис. 5. Схемы типов проводящих пучков (по: Лотова, 2007): а – коллатеральный закры-

тый; б – коллатеральный открытый; в – биколлатеральный; г – концентрический амфива-

зальный; д – концентрический амфикрибральный; е – радиальный;

Химия, Биология, подготовка к ГИА и ЕГЭ

Ткани растений

Тканью называется группа клеток, структурно и функционально взаимосвязанных друг с другом, сходных по происхождению, строению и выполняющих определенные функции в организме.

Чем выше сложнее организация растения, тем больше у него видов тканей.

У водорослей их не было как таковых, у папоротников уже есть проводящие ткани, а у покрытосеменных их около 80 видов…

Ткани могут быть простыми — состоящими из одного вида клеток и сложными — комбинация разных видов клеток.

Самые основные и важные для растительного организма ткани:

  • образовательные,
  • покровные,
  • проводящие,
  • механические и
  • основные

Начнем с покровной ткани растений

Если говорить о функциях этого типа ткани, то их три основных:

  • защита от воздействия окружающей среды (от высыхания, попадания вредных микроорганизмов, защита от интенсивного солнечного воздействия, и
  • обмен веществ с окружающей средой ( в том числе, газообмен)
  • восприятие раздражения.

Эпидермис

Клетки плотно соединены между собой, кроме тех, что образуют устьица, клеточная стенка утолщена. Поверхность эпидермиса зачастую бывает выстлана слоем восковых веществ и волосками — это кутикула.

Кутикула усиливает защитные свойства эпидермиса, но при этом снижается интенсивность обмена веществ, поэтому появляется необходимость в устьицах.

Обратите внимание, что устьица в эпидермисе имеются только в тканях высших растений.

Есть такая закономерность — чем толще кутикула растения. тем больше в эпидермисе устьиц, и наоборот, если кутикулы нет, отпадает потребность в устьицах.

В частях растения, погруженных в воду, а также в корнях кутикулы и устьиц нет.

Перидерма

Приходит на смену зеленым частям стебля, когда дерево «взрослеет» — его ствол становится коричневым.

Ткань многослойная и сначала ее клетки живые, затем отмирают.

Меристемаобразовательная ткань растения из одного вида клеток. Эти клетки постоянно делятся, поэтому обеспечивают рост растения как в длину, так и в ширину. Слой пробки не является постоянным, периодически в нем возникают разрывы — они проявляются на поверхности в виде бугорков — чечевичек, основная функция которых транспирация.

Кора (корка)

Полностью омертвевшие клетки.

Периферические слои корки отпадают, и старый слой феллогена отмирает. Вместо него дальше от центра закладывается новый слой, и, таким образом, формируется несколько перидерм.

Роль корки в жизни растения:

  • вместе с коркой растение освобождается от накопившихся вредных продуктов метаболизма;
  • защита от солнечных ожогов, перегрева, испарения воды, вымерзания, вредителей и инфекционных агентов

Образовательная ткань растений

(меристема — в переводе с латинского — «делимый»)

Клетки этой ткани живые, недифференцированные, постоянно делящиеся

Запасающая ткань растений

Паренхима представляет собой целую группу более или менее специализированных тканей, которые заполняют пространство внутри тела растений между проводящими и механическими тканями. Клетки живые, имеют округлую или слегка вытянутую форму. Характерно развитие межклетника.

Аэренхима (воздухоносная ) — в межклетниках находится воздух. Характерна для растений заболоченных районов, для которых газообмен затруднен.

Ассимиляционная ( фотосинтезирующая) паренхима — клетки с хлоропластами, обеспечивают фотосинтез, соответственно, располагается эта ткань в тех частях растения, которые освещены.

В листе, например, есть губчатая и столбчатая фотосинтезирующая паренхима — по форме клеток.

Запасающая паренхима — служит для запаса питательных веществ, которые временно не используются растением. Характерная для многолетних растений.

Многие растения запасают не только органические вещества, но и воду,тогда это водоносная паренхима.

У растений — суккулентов она хорошо развита.

Механические ткани растения

Колленхима — вытянутые, живые, длинные клетки. Ткань, содержащая много целлюлозы и способная к растяжению. Служит для укрепления молодого растения, побегов, стеблей. Клетки не одревесневают.

Склеренхима — присуща, в основном, высшим растениям. Клетки имеют ОЧЕНЬ толстые клеточные стенки. Это длинные волокна, в основном, клетки омертвевшие. Оболочки клеток одревесневают, когда растение завершает свой рост. Эта ткань дает возможность растению не просто стоять прямо, а выдерживать порывы ветра или еще какие-то нагрузки.

Проводящие ткани растения:

По ним больше всего вопросов на экзамене…

Проводящие ткани относят к сложным, т.к. там присутствуют разные виды клеток. Это и механические, и выделительные, и запасающие… Развиваются они из апикальных меристем (образовательной ткани) растения.

Ксилема (древесина) — отвечает за восходящий ток воды и растворенных в ней минеральных веществ от корней к листьям.

Клетки ксилемы утолщены, имеют боковую перфорацию, стенок между клетками нет, и, располагаясь друг над другом, они образуют полые сосуды. Если боковых «пор» нет, то такую клетку называют трахеидой.

Сосудами обладают большинство покрытосеменных растений и некоторые папоротникообразные.

У голосеменных передвижение воды происходит исключительно с помощью трахеид.

Древесина — это цепочки из прилегающих друг к другу длинных мёртвых водопроводящих клеток. В местах соприкосновения у них имеются поры, по которым и передвигаются вещества — из клетки в клетку по направлению к листьям. Так устроены трахеиды и сосуды высших растений.

Предполагается, что сосуды произошли от трахеид.

Флоэма (луб) — обеспечивает ток органических веществ. Это нисходящее движение.

Клетки образуют ситовидные трубки — их поперечные стенки густо пронизаны отверстиями. Ядер в таких клетках нет, рибосом, вакуолей нет, хлоропластов тоже нет, но они сохраняют живую цитоплазму. Они живут недолго, быстро отмирают, на их место становятся новые. Имеют клетки — спутницы .

Клетки — спутницы — специальные клетки или несколько клеток, прилегающие к длинной боковой стороне клетки ситовидной трубки, образовавшиеся при формировании последних. Содержат и ядро, и хлоропласты, присоединяются к стенке с помощью плазмодесмы, обеспечивают сосуды фитогормонами и АТФ.

Этот подвид ткани есть как у высших, так и у низших растений.

Выделительные ткани

Вообще, выделительной функцией обладает любая живая клетка ( это часть ее обмена веществ), но есть клетки, специализирующиеся только на этом.

Обычно это клетки небольшого размера с большой сетью ЭПС и развитыми аппаратами Гольджи. Центральная вакуоль может быть очень слабо выражена.

Наружные секреторные ткани — производные покровной ткани эпидермы. Представлены, в основном, разнообразными железистыми волосками (нектарники, пищеварительные волоски, солевые железы и т.д.)

Внутренние выделительные ткани — разбросаны по всему телу растения и не выводят вещества на поверхность, за пределы организма, накапливают вещества.

Это смоляные ходы, млечники и т.п.

А вот этот рисунок нужно знать очень хорошо. Еще ни один экзамен без него не обошелся…

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector