Типы проводящих тканей в стебле у растения
Типы проводящих тканей в стебле у растения
Первоначально ксилема образуется из первичной меристемы — прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.
Для корня характерен экзархный тип закладки ксилемы, для стеблей — эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.
У некоторых растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий). Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм , приспособленных к сезонным изменениям климата, — периодически. В результате этого образуются хорошо выраженные годовые кольца прироста.
Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку. Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено. У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки (рис.33). Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. Поэтому после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой (метаксилемой). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое (рис.34). Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются , а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд (рис.35). Большинство покрытосеменных растений и некоторых папоротникообразных обладают сосудами.
Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам. Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.
Чаще всего встречаются окаймлённые поры (рис.35-1). У них канал, обращённый в полость клетки, образует расширение — камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение — торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.
Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, поэтому такую пористость называют лестничной). Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.
С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений. Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними (рис.36). Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.
В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у которых они имеются наряду с трахеидами. Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.
Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа (лат. liber — луб, forma — форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки. Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.
В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины. Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей — это тяжевая паренхима. В другом случае паренхима образует горизонтальные лучи. Они называются сердцевинными лучами, так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.
Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками. Основные клетки проводящие, называются ситовидными элементами (рис.37). Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт. По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений. А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.
Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.
У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных он представлены ситовидными клетками. Ситовидные поля в клетках рассеяны по боковым стенкам. В протопласте сохраняется несколько деструктированное ядро.
У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки. В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница, образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки (рис.38). Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.
Структура зрелых ситовидных клеток имеет некоторые особенности. Отсутствует вакуоль, поэтому цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.
Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которых откладывается полисахарид каллоза. Поры располагаются группами, образуя ситовидные поля. У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку (рис.39). Если на ней находится одно ситовидное поле, её называют простой, если несколько — сложной.
Скорость передвижения растворов по ситовидным элементам составляет до 150см ? час. Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.
Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они имеются, то ситовидные элементы работают в течение всей жизни растения.
Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.
Покровные ткани. Виды покровных тканей. Устьице. Чечевички. Проводящие ткани. Строение проводящего пучка открытого и закрытого типа.
Покровная ткань растения – это наружная ткань, которая защищает растения от неблагоприятных воздействий окружающей среды (перепадов температур, засухи, механических повреждений) и от различных бактерий, вирусов и грибов. Также эти ткани способствуют всасыванию и выделению воды (какую иногда приходится удерживать), осуществляют газообмен.
Покровные ткани сменяют одна другую при возрастных изменениях органа или меняют свою функцию с возрастом. Морфологические особенности очень специфичны для индивидуальных конкретных типов покровной ткани.
С функциональной точки зрения покровные ткани можно разделить на три типа:
1. Наружные покровные ткани с преобладающей функцией регуляции газообмена, транспирации и механической защиты (эпидерма, перидерма, ритидом, экзодерма).
2. Наружные покровные ткани с преобладанием функций всасывания (ризодерма, веламен).
3. Внутренние пограничные ткани с преобладанием функций регуляции прохождения веществ (эндодерма, обкладочные клетки проводящих пучков в листьях, листовых черешках).
По происхождению различают первичные, образовавшиеся из первичных меристем (эпидерма, ризодерма, эндодерма, веламен) и вторичные, пришедшие им на смену (перидерма, экзодерма), покровные ткани.
У многолетних древесных растений и их корней можно наблюдать и третичную ткань — корку, иначе ритидом.
Первичные покровные ткани. Эпидерма — покровная ткань листа, травянистого стебля, плода, лепестков и других частей цветка. Клетки живые, представлены одним, реже 2-мя слоями. Характерная особенность эпидермы клетки плотно расположенные, прямостенные или извилистостенные, без межклетников. Практически отсутствуют хлоропласты. В клетках эпидермы — постенный слой цитоплазмы, ядро сдвинуто к клеточной оболочке. Из пластид встречаются лейкопласты. Вакуоль большая. В клеточном соке у многих видов присутствуют водорастворимые пигменты (антоцианы, флавоноиды), от чего листья и лепестки цветов приобретают красную, синюю, коричневую, желтую и бурую окраски. Клетки эпидермы неоднородные. Среди типичных клеток располагаются устьица, а на поверхности — различного типа волоски.
Если устьица расположены беспорядочно, а клетки эпидермы изодиаметрические, это чаще всего признак двудольных растений (рис. 30, 31, 32). Если клетки эпидермы удлиненные, а устьица располагаются упорядоченными рядами — мы рассматриваем листья однодольных (рис. 33) или эпидерму побегов хвоща. Устьица образованы двумя замыкающими клетками, имеющими бобовидную форму. Между ними — устьичная щель. Через устьичные щели происходит транспирация и газообмен. Под щелью располагается воздушная полость, окруженная паренхимными клетками (мезофилл листа, коровая паренхима стебля и т.д.). На поперечном срезе видна неравномерная утолщенность замыкающих клеток (рис. 34). В самих замыкающих клетках много хлоропластов и митохондрий. В них идет активный синтез пластических веществ, а так же поглощение ионов калия. Эти два фактора увеличивают концентрацию осмотически активных веществ и усиливают процесс осмоса. Наступает состояние сильного насыщения водой и неутолщенные боковые стенки замыкающихся клеток прогибаются и щель открывается. В случае малого доступа воды из прилегающих клеток в устьичные клетки, щель автоматически закрывается.
Структура эпидермальных клеток — важный диагностический признак. Для целей диагностики важно использовать структуру устьичного аппарата, который представлен комплексом замыкающих и окружающих устьице побочных или околоустьичных клеток. Наиболее часто встречается у двудольных растений аномоцитный тип устьичного аппарата (рис.35), околоустьичные клетки располагаются беспорядочно, их более 3-х и они мало отличаются по форме от клеток эпидермы. Анизоцитный тип встречается реже и только у цветковых растений. Около замыкающих клеток располагается три побочных клетки одна из которых заметно отличается по размеру (рис.35-Б). Тетрацитный тип характерен главным образом однодольным растениям. Более редко встречаются парацитный (рис. 35-В), диацитный (рис. 35-Г)и энциклоцитный (розеточный, радиальный) (рис. 35-Д). При диагностике сырья нужно учитывать, что при амфистоматном типе строения листа, когда устьица располагаются и на верхней и на нижней стороне листа мы можем иметь дело со смешанным типом устьичного аппарата. В зависимости от экологических условий, а также от характера листа (зимующие или опадающие) мы можем наблюдать устьица, поднимающиеся над поверхностью эпидермы или погруженные вглубь мезофилла.
Вся поверхность эпидермы покрыта слоем кутикулы или многочисленными трихомами двух типов — различного типа волосками и эмергенцами. Эпидермальные клеши образуют на поверхности сосочковидные выросты, папиллы, простые одно- и многоклеточные волоски, звездчатые и другие с гладкой, ребристой и бородавчатой поверхностью (рис.36, 37, 38). Как и кутикула, восковой налет, так и волоски уменьшают испарение и предохраняют растение от вредных атмосферных воздействий. На листе крапивы кроме ретортовидных простых волосков, встречаются эмергенцы, именуемые у крапивы жгучими волосками. В их образовании принимает участие кроме клеток эпидермы, нижележащие слои мезофилла листа.
Эндодерма— это внутренний слой первичной коры, расположенный на границе первичной коры и центрального цилиндра.
Благодаря наличию неравномерного утолщения, они выполняют несколько функций — механической, запасающей и регулирующей продвижение веществ (воды, минеральных веществ и пластического материалы) из центрального цилиндра в коровую часть. Характерна первичной структуре корня, стебля. Хорошо выражена в корневище, в игольчатых листьях некоторых хвойных.
Ризодерма (эпиблема)– волосконосный слой клеток на поверхности корешка, имеющего первичную структуру. Это один слой тонкостенных клеток, имеющий одноклеточные (реже двухклеточные) выросты — корневые волоски (рис. 39). Клетки ризодермы живые с многочисленными митохондриями, активно функционирующие. Имеют центральную вакуоль и постенное расположение цитоплазмы. В клеточных оболочках много пектиновых веществ. Ослизняясь при соприкосновении с почвенной влагой, они обеспечивают контакт с комочками почвы и тем самым обеспечивают поглощениеводы иминеральных веществ. Корневые волоски не долговечны (живут 15-20 дней), но они постоянно возобновляются, формируются вблизи точки роста корня при дифференциации гистогенного слоя — дерматогена (первичная меристема).
Веламен — многослойная покровная ткань воздушных корней орхидных и ароидных растений, а также некоторых наземных однодольных, имеющих первичную структуру корня. Он представляет собой одно или многослойный покров, состоящий из плотно сомкнутых мертвых клеток с утолщенными оболочками. Под веламеном располагается экзодерма. В сухую погоду клетки веламена заполняются воздухом, а во время дождя они наполняются водой. Это специализированная водозапасающая ткань. Поступление воды происходит капиллярным путем через поры и отверстия в оболочках. Образуется из однослойной протодермы (дерматоген), затем клетки делятся и веламен становится многослойной тканью.
Вторичные покровные ткани. Перидерма — сложная ткань, в основе которой находится феллоген (пробковый камбий). Феллоген — вторичная меристема. Он образуется в стебле из паренхимных клеток коры, расположенных под эпидермой, или из клеток эпидермы. Кнаружи феллоген откладывает радиально расположенные слои клеток, преобразующихся в клетки пробки (феллему), а внутрь — клетки феллодермы (живые паренхимные клетки). Все три слоя клеток: феллема, феллоген и феллодерма и носят название перидерма (рис.40). Клетки пробки -изодиаметрические, чаще квадратные, мертвые, т.к. клеточные оболочки пропитаны суберином и делают оболочки газо- и водонепроницаемыми. Для осуществления газообмена в первый же год жизни (перидерма на побегах деревьев и кустарников образуется осенью и обеспечивает их нормальную перезимовку) на смену устьиц образуются чечевички. На поверхности побега это буроватый или сероватый округлой или овальной формы бугорок. Образуется за счет активной работы многослойного феллогена (рис.41). Заполняющие чечевичку клетки округлой формы, с опробковевшей клеточной оболочкой с массой межклетников, через которые свободно происходит газообмен. Пробковый камбий обычно функционирует до определенного возраста, а у бука, осины, дуба и лещины, раз образовавшись, функционирует всю жизнь. В 30-ть лет снимают один слой пробки, а камбий продолжает ее наращивать.
На корнях однолетних и многолетних растений с переходом ко вторичной структуре образуется перидерма, но за счет активного деления клеток перицикла, расположенного под эндодермой. Это наружный слой центрального цилиндра.
Ритидом.Это многослойная перидерма.Она может быть чешуйчатой, как у сосны, яблони и кольчатой, как у виноградной лозы. При образовании чешуйчатой корки последующие слои феллогена закладываются в глубине коровой паренхимы тангентально, отсекая хордой сегменты коры. Лишенные связи, из-за образования нового слоя перидермы с проводящими элементами эти клетки отмирают. В случае образования кольчатой корки, последующие слои феллогена закладываются в виде колец. Наружные слои ритидома постоянно слущиваются. На поверхности корки имеются иногда очень крупные трещины. Корка до конца жизни древесного растения изнутри наращивает толщину своей покровной ткани (рис. 42).
Экзодерма — покровная ткань подземных органов, утративших эпиблему (ризодерму) с возрастом. Защитную и покровную функцию на себя приняли клетки первичной коры. Их клеточные оболочки утолщаются и химически видоизменяются — наружные опробковевают чаще всего, внутренние слои могут и одревесневать. Располагаются клетки плотно прижатыми друг к другу и без межклетников. В отличие от пробкового слоя перидермы, клетки экзодермы располагаются беспорядочно (в шахматном прядке).
Устьице — щелевидное отверстие (устьичная щель) в Эпидермисе надземных органов растений и две ограничивающие его (замыкающие) клетки (чаще всего бобовидной формы). Стенки замыкающих клеток, обращенные к щели, образуют утолщения. Противоположные стенки тонкие. Устьичная щель ведёт в обширный межклетник — подустьичную полость. У. нередко бывает окружено двумя или несколькими клетками (т. н. побочными), отличающимися по форме от основной массы клеток эпидермиса. У. встречаются в эпидермисе всех надземных частей растения, имеющих хлорофилл, но особенномногочисленны в эпидермисе листа (100-300 на 1 ммІ).
Они осуществляют регуляцию газо- и парообмена растения с внешней средой путём изменения ширины устьичной щели (устьичное движение). В основе устьичных движений лежит обратимое изменение Тургора замыкающих клеток. Тонкие участки их стенок с повышением тургора растягиваются и вытягиваются в направлении от устьичной щели. В этом же направлении выгибаются и стенки, обращенные к щели. Ширина щели увеличивается, и У. открывается. С понижением тургора замыкающих клеток У. закрывается. Изменение тургора замыкающих клеток происходит вследствие обратимого превращения осмотически неактивного вещества — крахмала в осмотически активные вещества — сахара. Однако, по некоторым данным, в регуляции тургора замыкающих клеток важную, возможно ведущую, роль играют ионы калия. В связи с этим делаются попытки создать новую гипотезу механизма устьичных движений.
Ночью у большинства растений У. закрыты и газообмен и транспирация минимальны. В светлый период суток при благоприятных погодных условиях устьичные щели находятся в открытом состоянии. Через открытые У. углекислый газ легко проникает во внутренние ткани растения, а кислород,образовавшийся в процессе Фотосинтеза, а также пары воды выделяются в атмосферу.
Чечевички – это образования на стволе и ветках дерева, в которых находятся мелкие отверстия, прикрытые рыхлой тканью. По форме они очень разнообразны: обычно они представлены в виде мелких округлых бугорков, или штрихов, но могут быть и ромбическими. Основными функциями являются газообмен между внутренними живыми тканями стебля и окружающей средой, а также выведение лишней влаги. Чечевички разбросаны по стеблю и хорошо заметны, также их можно увидеть и на некоторых плодах в виде крапинок, например, на грушах, яблоках и др.
Заполняющие чечевички клетки не имеют хлорофилловых зерен, округлые по форме, рыхло соединенные между собой. Под ними закладывается слой феллогена, служащий для увеличения числа образующих чечевички клеток. Образование пробковой ткани начинается после закладки. По обе стороны происходит деление клеток тангентальными перегородками. К окончанию формирования феллогеновый слой опоясывает всю окружность стебля и соединяется с феллогеном чечевички, которая оказывается внутри перидермы.
Если у растений пробка образуется глубоко в ткани стебля, то чечевички закладываются в пробковом камбии, а не под устьицами. Клетки пробкового камбия местами при делении откладывают рыхлые клетки наружу вместо обыкновенных пробковых клеток, а внутрь — большую массу феллодермы.
Проводящие ткани
Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. Они возникли как следствие приспособления растений к жизни на суше. В связи с жизнью в двух средах – почвенной и воздушной, возникли две проводящие ткани, по которым вещества передвигаются в двух направлениях.
По ксилеме от корней к листьям поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли (восходящий, или транспирационный ток).
По флоэме от листьев к корням передвигаются вещества, образовавшиеся в процессе фотосинтеза, главным образом сахароза (нисходящий ток). Так как эти вещества представляют собой продукты ассимиляции углекислого газа, транспорт веществ по флоэме называют током ассимилятов.
Проводящие ткани образуют в теле растения непрерывную разветвленную систему, соединяющую все органы – от тончайших корешков до самых молодых побегов. Ксилема и флоэма представляют собой сложные ткани, в их состав входят разнородные элементы – проводящие, механические, запасающие, выделительные. Самыми важными являются проводящие элементы, именно они выполняют функцию проведения веществ.
Ксилема и флоэма формируются из одной и той же меристемы и, поэтому, в растении всегда располагаются рядом.Первичные проводящие ткани образуются из первичной латеральной меристемы – прокамбия, вторичные – из вторичной латеральной меристемы – камбия. Вторичные проводящие ткани имеют более сложное строение, чем первичные.
Ксилема (древесина) состоит из проводящих элементов – трахеид и сосудов (трахей), механических элементов -древесинных волокон (волокон либриформа) и элементов основной ткани — древесинной паренхимы.
Проводящие элементы ксилемы носят название трахеальных элементов. Различают два типа трахеальных элементов –трахеиды и членики сосудов (рис. 3.26 ).
Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. Сосуд состоит из многих клеток, называемых членикамисосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации. По сосудам растворы передвигаются значительно легче, чем по трахеидам.
Дата добавления: 2018-04-15 ; просмотров: 570 ; ЗАКАЗАТЬ РАБОТУ
Проводящие ткани. Флоэма
Высшее растение представляет собой сложный организм с четкой дифференциацией тканей и специализацией органов, выполняющих различные жизненно важные функции.
При этом специализированные органы часто удалены друг от друга на значительное. расстояние. Например, фотосинтез происходит главным образом в листьях, поглощение воды и минеральных веществ — в корнях, отложение запасных питательных веществ — в особых запасающих тканях.
Основным условием нормальной жизнедеятельности растения является существование специального аппарата передвижения продуктов метаболизма от одного органа к другому. Передача веществ на большие расстояния осуществляется в растении достаточно экономично и с большой скоростью по специализированным проводящим тканям — флоэме и ксилеме.
Флоэма — ткань, главная функция которой состоит в проведении пластических веществ (нисходящий ток).
Ксилема — ткань, проводящая воду и растворенные в ней вещества (восходящий ток). Обычно обе проводящие ткани объединяются во флоэмно-ксилемные пучки, совокупность которых составляет проводящую систему растения.
Флоэма — сложная ткань, включающая различные по структуре и функциональному значению анатомические элементы. Основным элементом флоэмы являются ситовидные трубки.
Каждая ситовидная трубка состоит из ряда отдельных клеток, соединенных между собой поперечными стенками. Такие трубки обычно тянутся вдоль продольной оси органа, но есть и поперечно идущие ситовидные трубки, входящие в состав анастомозов, тянущихся от одного продольно расположенного сосудисто-волокнистого пучка к другому. Оболочки ситовидных трубок целлюлозные. Лишь к концу вегетации растения некоторые ситовидные трубки одревесневают. В полостях ситовидных трубок весьма долго сохраняется живой протопласт в виде пристенного слоя. Ядро в зрелых ситовидных трубках отсутствует.
Протопласты ситовидных трубок содержат ряд включений. В некоторых ситовидных трубках находили пластиды и митохондрии. Ситовидные трубки предназначены преимущественно для проведения пластических веществ. Особенно важна их роль в проведения азотсодержащих веществ, служащих для построения белков.
Клетки-членики ситовидных трубок живут сравнительно недолго. Как показали электронно-микроскопические исследования, в их протопласте в процессе дифференциации наблюдаются постепенные структурные изменения. В прокамбиальной или камбиальной (меристематической) стадии протопласт молодого ситовидного элемента обладает тонкой структурой, типичной для нормальной клетки. Однако уже на довольно ранней стадии дифференциации в нем происходит заметное разрыхление (разжижение) цитоплазмы. Затем ядро и тонопласт разрушаются, а вакуоля наполняется тонкофибриллярными структурами. Несмотря на отсутствие тонопласта, отделяющего цитоплазму от клеточного сока, митохондрии и пластиды остаются в постенном слое и обычно сохраняются во взрослых ситовидных трубках. Эндоплазматическая сеть и диктиосомы в дифференцированных ситовидных элементах покрытосеменных распадаются на многочисленные пузырьки и теряют свою структуру. У голосеменных эндоплазматическая сеть может некоторое время сохраняться в полостях дифференцированных ситовидных клеток, но в конце концов также разрушается.
Наиболее своеобразной особенностью ситовидных трубок является строение их поперечных стенок, испещренных многочисленными мелкими перфорациями наподобие сита, откуда и сами клетки получили название ситовидных, а поперечные стенки с ситами — ситовидных пластинок. Перфорации обеспечивают непрерывность протопластов элементов ситовидных трубок. Эта непрерывность была показана с помощью электронного микроскопа. Осенью ситовидные пластинки в большинстве случаев затягиваются особым веществом, называемым каллозой. В некоторых ситовидных трубках каллоза закупоривает сита окончательно, а в большинстве трубок она к весне растворяется, открывая сообщение между отдельными члениками.
Ситовидные участки имеются и на продольных стенках. Строение и функция сит на продольных стенках такие же, как и на поперечных. Так как продольные стенки оболочек ситовидных трубок имеют более обширную площадь, чем поперечные, то сита на продольных стенках не занимают всей их поверхности, а собраны в группы, называемые ситовидными полями.
Ситовидные трубки функционально связаны с другими специализированными элементами флоэмы — клетками-спутниками. Ситовидная трубка происходит из той же инициальной клетки, что и сопровождающая ее клетка-спутник.
Инициальная клетка делится продольной перегородкой на две клетки неодинакового диаметра. Более крупная из дочерних клеток дифференцируется как ситовидная трубка, а более мелкая несколько раз делится в поперечном направлении и образует цепочку клеток-спутников. В этих клетках полностью сохраняется живой протопласт с ядрами. Оболочки этих клеток, примыкающие к ситовидным трубкам, тонкие, целлюлозные и имеют простые поры. Связь ситовидных трубок со спутниками настолько прочная, что они не отделяются друг от друга даже при мацерации.
Присутствие в клетках-спутниках ядер и цитоплазмы, а также тесная связь этих клеток с ситовидными трубками, в значительной степени утративших эти атрибуты самостоятельной живой системы, указывают на активную роль спутников в метаболизме флоэмы. Предполагают, что в спутниках с особой интенсивностью вырабатываются различные ферменты, которые передаются в ситовидные трубки.
Ситовидные трубки и спутники соприкасаются не только между собой, но и с клетками лубяной паренхимы. Связь с этими клетками также обеспечивается посредством простых пор. Простые поры, соединяющие продольные стенки ситовидных трубок с паренхимой, собраны группами и со стороны ситовидных трубок вполне напоминают ситовидные пластинки. Клетки паренхимы, соприкасающиеся с ситовидными трубками, более или менее удлинены. Они располагаются среди ситовидных элементов без какого-либо определенного порядка. Эта паренхима называется лубяной. Оболочки таких клеток целлюлозные, тонкие, протопласт содержит ряд пластических веществ, периодически накапливающихся или переходящих в растворенное состояние, как во всякой живой и вполне жизнедеятельной клетке.
У некоторых растений группы ситовидных трубок с клетками-спутниками и лубяной паренхимой перемежаются с группами лубяных волокон. Такая структура особенно характерна для древесных растений (виноградная лоза, липа и др.). Весь комплекс анатомических элементов, состоящий из ситовидных трубок и примыкающих к ним клеток, называется мягким лубом, а пучки лубяных волокон — твердым лубом. Лубяные волокна, как уже говорилось, часто одревесневают и притом весьма рано, элементы же мягкого луба или совсем не одревесневают, или же одревесневают лишь старые элементы (у растения, кончающего свою вегетацию).
Ситовидные трубки не у всех растений хорошо развиты. Особенно широкими ситовидными трубками с ясно выраженной перфорацией отличаются лианы и вообще растения с вьющимися и цепляющимися побегами (тыква, виноградная лоза, глициния) и водные растения (водяной орех, водяная лилия и др.). У многих растений ситовидные трубки очень узкие, перфорации выражены слабо (картофель, лен и др.).
Продолжительность существования ситовидных трубок у различных растений различна и колеблется от одного вегетационного периода до нескольких лет. В общем же ситовидные трубки, лишенные ядер, недолговечны. Срок существования каждой клетки (членика) ситовидной трубки тесно связан с сохранностью ее живого содержимого — протопласта. С разрушением протопласта оболочка каждой клетки ситовидной трубки может одревесневать и сохраняться или же сдавливаться соседними живыми паренхимными клетками. В последнем случае происходит облитерация ситовидной трубки, и она становится трудно различимой.
В редких случаях паренхимные клетки образуют сосочковидные выросты в полость ситовидной трубки. Эти выросты, называемые тиллами, закупоривают ситовидную трубку. Образование тилл в ситовидных трубках можно наблюдать у виноградной лозы в месте срастания привоя и подвоя, причем тиллы в данных случаях имеют неодревесневшие оболочки. Хорошо и часто тиллы развиваются в сосудах.
В общих чертах строение ситовидных трубок у всех растений одинаково, но в деталях имеются различия. Прежде всего, у разных растений различен просвет ситовидных трубок, размеры перфораций и ситовидных полей, составленных из них, очертания ситовидных полей как на поперечных, так и на продольных стенках, и само распределение полей, неодинаковы также толщина оболочек, степень развития каллозы. У голосеменных и папоротникообразных флоэмные элементы имеют ситовидные пластинки только на продольных стенках. Они называются ситовидными клетками.
Даже в одном и том же растении, например, в стеблях виноградной лозы, не все ситовидные трубки построены одинаково. Часть из них не имеет клеток-спутников. Ситовидные трубки, возникшие в начале формирования побега, т. е. первичного происхождения, имеют ситовидные участки только на поперечных стенках, а у ситовидных трубок, возникших позднее (вторичного происхождения), они возникают и на продольных стенках. Тиллы образуются лишь в полостях ситовидных трубок вторичного происхождения. Ситовидные трубки первичного происхождения относительно скоро облитерируются и в дальнейшем, если участок коры, содержащий эти трубки, сохраняется на растении живым, окончательно исчезают, растворяясь соответствующими ферментами.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Внутренние строение стебля древесного растения
Внутренние строение стебля
Стебель древесных растений умеренных широт имеет такое строение: центральная часть стебля занята древесиной, дальше идет тонкий слой образовательной ткани – камбий, снаружи располагается кора.
Основная масса древесины – это отмершие клетки: сосуды и трахеи, что выполняют проводящую функцию, и разные виды склеренхимных (механических) клеток.
Древесина (ксилема) – основная часть стебля. Состоит она из сосудов (трахей), трахеид, древесных волокон (механическая ткань). За год образуется одно кольцо древесины. По годичным кольцам древесины можно определить возраст растения. У тропических растений ,которые растут непрерывно в течении года, годичные кольцо почти незаметны. Потому как годичные кольца хорошо выражаются за счет пробуждения деревьев весной, и засыпания на зиму. Весенняя древесина состоит из тонкостенных клеток, а осенняя из толстостенных. Получается что переход о д весеннее-осеннего периода постепенный, от осеннее-весеннего более внезапный.
Попробуй обратиться за помощью к преподавателям
Также в состав древесины входят паренхимные клетки, их особенно много в центральной части, где и образуют сердцевину.
Сердцевина – это центральная часть стебла. Внешний ее слой состоит из живых паренхимных клеток где и откладываются питательные вещества, центральная – из больших клеток, часто отмерших. Между клетками серцевины есть межклеточные пространства. Ряд паренхимных клеток берущие начало от сердцевины к первичной коре, направлены радиально через древесину и луб, называются сердцевинным лучом. Этот луч выполняет проводящую и запасающую функицю.
Кора имеет два отдела – пробка и луб, таким образом, различается первичная и вторичная кора.
Первичная кора состоит из двух слоев: колленхимы (слой под перидермой) – механическая ткань; паренхимы первичной коры, выполняющая запасающую функцию.
Перидерма. Первичная покрывная ткань (эпидермис) функционирует недолго. Вместо нее образуется вторичная покровная ткань – перидерма, которая состоит из трех слоев клеток: пробки (внешний слой), пробкового камбия (средний слой), феллодермы (внутренний слой).
Задай вопрос специалистам и получи
ответ уже через 15 минут!
Пробка расположена снаружи, образуется в результате многоразового заложения слоев перидермы, выполняя таким образом, защитную функцию. Наличие трещин на поверхности пробки объясняется тем, что почти все его клетки мертвые и не способны растягиваться во время утолщения стебля.
Вторичная кора (или луб, флоэма). Луб прилегает к камбию, состоит из ситоподобных элементов, паренхимных клеток и лубовых волокон, которые в свою очередь являются механической тканью и выполняют, таким образом, опорную функцию.
Лубяные волокна образуют слой, называется твердым лубом; все остальные элементы образуют мягкий луб. Клетки лубу образуются за счет деления и дифференциации камбия.
Камбий – образовательная ткань. Снаружи образую летки лубу вторичную кору, а внутри – клетки древесины.
Рост стебля в толщину происходи благодаря делению клеток камбия. Деятельность камбия прекращается зимой, весной возобновляется. Транспорт воды и растворенных в ней веществ от корней до листов происходит за счет проводящими элементами древесины (ксилемы), а транспорт продуктов ассимиляции от листков до корней – проводящими элементами луба (флоэмы).
Образуя проводящие пучки, флоэма и ксилема всегда распределяются в определенном порядке по отношения к другим структур стебля. Ксилема откладывается в середине от камбия и входит в состав древесины, а флоэма расположена снаружи от камбия и входит в состав луба.
Переход от первичной анатомической структуры стебля ко вторичной. Работа камбия
В стебле с первичным строение различают центральный цилиндр и первичную корку. Граница нечетко выражена между ними. В состав первичной коры входит ассимиляционная, механическая, запасающая, воздухоносная и выделительные ткани. Проводящие пучки разделены участками паренхимы и, собраны из первичных проводящих тканей. Стоит отметить что первичная флоэма располагается на периферии пучка, а к середине стебля направлена первичная ксилема. Сердцевина, как правила, находится в центре.
Пучковый камбий возникает сначала в первичных пучках. В следствии чего, между прослойками пучкового камбия возникают перемычки межпучкового камбия. Пучковый камбий закладывает проводящие элементы, а межпучковый – паренхиму, таким образом, проводящие пучки хорошо различаются. Для некоторых древесных растений характерен не пучковый тип вторичного утолщения. При этом проводящие пучки сближаются друг к другу, образуя три концентрических слоя: древесину (вторичная ксилема), камбий и луб (вторичная флоэма). Центральная часть представлена сердцевинной, состоящий из живых тонкостенных паренхимных клеток, функция которых накапливание питательных веществ. Снаружи от сердцевины расположена древесина, занимающая до $90%$ объема ствола. Важную роль в древесине играют механические древесные волокна, которые придают прочность стволу.
Также в состав древесины входят паренхимные клетки, которые образуют в свою очередь сердцевинные лучи и клетки вертикальной паренхимы. Между корой и древесиной находится камбий, состоящий из образовательной ткани. Эти ткани образую ксилему и флоэму. Снаружи от камбия находится вторичная кора, т.н. луб, образованная камбием. Луб непосредственно состоит из ситовидных трубок, лубяных волокон, и лубяная паренхима. Луб также может накапливать питательные вещества. Возле луба находится запасающая паренхима, а за ней вторичная покровная ткань – перидерма. Слой перидермы выполняющая защитную функция называется пробкой. Через пару лет у растения пробка переходит в корку – третичную покрывную ткань.
Передвижение минеральных веществ по стеблю
По стеблю к листьям, цветкам и плодам, передвигаются вода и минеральные соли, которые всасываются корнями. Это так называемый восходящий ток, он осуществляется по древесине, непосредственно основным проводящими сосудами. Которые являются мертвыми пустыми трубками, образованные из живых паренхимных клеток. Восходящий ток, также осуществляется трахеидами, т.е. мертвыми клетками связанные между собой с помощью окаймленных пор.
В листьях образуются органические вещества, которые транспортируются во все органы растений – стебель, корень. Обратная транспортировка называется нисходящим током. Он осуществляется по лубу, с помощью ситовидных трубок. Ситовидные трубки являются живыми клетками связанные между собой ситечками – тонкими перегородками с отверстиями. Находятся они как в поперечных, так и в продольных стенках. С помощью сердцевинных лучей у древесных растений питательные вещества транспортируются в горизонтальной плоскости.
Отложение органических веществ в стеблях
В специальных запасающих тканях, образующие из паренхимных клеток, накапливаются органические вещества внутри клеток или в оболочках клеток. Например, сахара, крахмал, инулин, аминокислоты, белки, масла.
В стебле органические вещества откладываются в паренхимные клетки первичной коры, в сердцевинных лучах, в живых клетках сердцевины. Роль запасающих тканей для растений заключается в питании органическими веществами. Также запас органических веществ растениями является продуктом питания человека и животных. Люди используют питательные вещества растений в основе сырья.
Так и не нашли ответ
на свой вопрос?
Просто напиши с чем тебе
нужна помощь
Типы проводящих тканей в стебле у растения
Тема: Проводящие ткани
Материалы. Стебель тыквы (Cucurbita pepo); сернокислый анилин; постоянные микропрепараты: «Продольный срез древесины сосны (Pinus sylvestris)», «Корневище орляка (Pteridium aguilinum)».
Проводящая система растений состоит из ксилемы (древесины), осуществляющей восходящий ток воды и растворенных в ней минеральных веществ от корней к листьям и флоэмы — ткани, проводящей пластические вещества (нисходящий ток) от листьев к корням. Это сложные ткани, т. к. включают различные по структуре и функциональному значению анатомические элементы.
Проводящие ткани по происхождению могут быть первичными и вторичными. Первичные образуются в результате деятельности прокамбия , а вторичные — камбия.
Ксилему составляет три типа элементов: 1) собственно проводящие (трахеиды и сосуды); 2) механические (древесинные волокна или либриформ); 3) паренхимные.
Некоторые клетки этих тканей остаются живыми на протяжении всей жизни, а другие отмирают, сохраняя определенные функции.
Основными проводящими элементами ксилемы являются трахеиды и членики сосудов (трахеи). В зрелом состоянии оба типа элементов представляют собой более или менее вытянутые клетки, лишенные протопластов и имеющие одревесневшие вторичные оболочки.
Трахеиды — это прозенхимные клетки со скошенными концами. Они отличаются от сосудов тем, что не имеют перфораций. В трахеидах передвижение воды из клетки в клетку осуществляется, главным образом, через пары пор, поровые мембраны (замыкающая пленка пор), которые отличаются высокой проницаемостью для воды и растворенных веществ.
Членики сосудов (трахеи) — это наиболее специализированные водопроводящие элементы, представляющие собой длинные (до многих метров) полые трубки, состоящие из члеников. Они образуются из вертикального ряда прозенхимных меристематических клеток прокамбия. Их боковые стенки с возрастом одревесневают и неравномерно утолщаются, а поперечные — образуют сквозные отверстия (перфорации). Выделяют несколько типов утолщения боковых стенок сосудов — кольчатые, спиральные, лестничные и др.
У покрытосеменных растений в первичной ксилеме обычно развиваются трахеиды, а во вторичной — сосуды.
Флоэма, как и ксилема, состоит из трех типов тканей: 1) собственно проводящей (ситовидные клетки, ситовидные трубки); 2) механической (лубяные волокна); 3) паренхимной.
Наиболее высокоспециализированными элементами флоэмы являются ситовидные элементы. К их характерным особенностям относятся онтогенетически измененные протопласты с ограниченной метаболической активностью и система межклеточных контактов с соседними ситовидными элементами, осуществляемых посредством специализированных участков клеточной оболочки (ситовидных полей), пронизанных отверстиями (перфорациями).
По степени специализации ситовидных полей и особенностям их распределения ситовидные элементы классифицируются на ситовидные клетки и членики ситовидных трубок.
Ситовидная трубка представляет собой вертикальный ряд клеток, соединенных между собой концами посредством ситовидных пластинок. Каждая отдельная клетка, входящая в состав ситовидной трубки называется члеником ситовидной трубки. Оболочки их целлюлозные, первичные. Органические вещества движутся сверху вниз из клетки в клетку по дезорганизованным протопластам (смесь клеточного сока с цитоплазмой). Рядом с ситовидной трубкой обычно расположены сопровождающие клетки (клетки-спутники). Они тесно связаны с члениками ситовидной трубки своим происхождением и функцией, заключающейся в регуляции передвижения веществ по флоэме.
Ситовидные клетки лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра. Их ситовидные поля рассеяны на боковых стенках.
Задание 1. Рассмотреть трахеиды на постоянном микропрепарате продольного среза древесины сосны (Pinus sylvestris). Обратить внимание на форму и расположение клеток трахеид; типы пор и их расположение.
Последовательность работы. При малом увеличении видно, что вся древесина состоит из длинных прозенхимных клеток. Это трахеиды (рис. 40). Более широкие и тонкостенные трахеиды весенней древесины постепенно переходят в толстостенные трахеиды осенней древесины с узкой полостью.
Рис. 40. Трахеиды древесины сосны (Pinus sylvestris):
1 — окаймленная пора.
Рассматривая весенние трахеиды при большом увеличении, обратить внимание на то, что между ними нет перфораций, следовательно, вода проникает из трахеиды в трахеиду только через поры, которые расположены на радиальных стенках. Это окаймленные поры, в плане они видны в виде двух концентрических окружностей.
Задание 2. Приготовить временный микропрепарат продольного среза проводящего пучка стебля тыквы (Cucurbita pepo) в сернокислом анилине. Рассмотреть сосуды с разными типами утолщений вторичной оболочки (рис. 41). Сделать рисунок.
Рис. 41. Сосуды стебля тыквы (Cucurbita pepo):
А — пористый; Б — сетчатый; В — спиральный; Г — кольчатый.
Последовательность работы. При изготовлении среза обратить внимание на то, чтобы разрез прошел через середину одного из крупных проводящих пучков. Рассмотреть сосуды очень большого диаметра, расположенные ближе к центру стебля. Они обычно не помещаются целиком в толще среза, и на срезе видна длинная пустая полость сосуда, ограниченная с двух сторон узкими полосками стенки.
Микропрепарат рассмотреть при большом увеличении. Найти очень крупные сосуды, расположенные к центру и рассмотреть их поверхность. Обратить внимание на то, что она покрыта сетью утолщений (сетчато-пористые). Затем передвинуть микропрепарат на соседние сосуды, имеющие меньшие диаметры и найти на их поверхности пористые, спиральные и кольчатые утолщения (рис. 41). Кольчатые сосуды образуются раньше других, они очень тонкие и сильно растянуты в длину, вследствие роста стебля после их возникновения. После кольчатого сосуда и участка мелкоклеточной паренхимы видны ситовидные трубки с сопровождающими клетками. Зарисовать отдельные клетки сосудов с разными типами утолщения клеточной оболочки.
Задание 3. Рассмотреть сосуды, имеющие лестничные утолщения оболочки на постоянном микропрепарате продольного среза корневища папоротника-орляка (Pteridium aguilinum) (рис. 42).
Рис. 42. Лестничный сосуд корневища папоротника-орляка (Pteridium aquilinum):
1 — щелевидная пора.
Последовательность работы. Обратить внимание на горизонтальные промежутки между перекладинами — щелевидные поры и наклонные перегородки, разделяющие членики сосудов с щелевидными перфорациями.
Задание 4. Используя микропрепарат из задания 2 изучить строение ситовидной трубки на продольном срезе стебля тыквы. Сделать рисунок (рис. 43).
Рис. 43. Часть проводящего пучка стебля тыквы (Cucurbita pepo) в продольном разрезе:
1 — ситовидная трубка, 2 — ситовидная пластинка, 3 — сопровождающая клетка, 4 — камбий, 5 — сетчато-пористый сосуд.
Последовательность работы. При большом увеличении микроскопа найти ситовидные трубки, расположенные ближе к периферии стебля, внутрь от слоя древесинных волокон. Их можно узнать по ситовидным пластинкам. Затем рассмотреть клетки-спутники, находящиеся между ситовидными трубками. Обратить внимание на число клеток, соответствующих каждому членику ситовидной трубки. Зарисовать ситовидную трубку с клетками-спутниками.
1. По каким проводящим тканям осуществляется передвижение органических веществ, а по каким — минеральных?
2. В чем сходство онтогенеза ситовидных трубок и сосудов?
3. Что такое сопровождающая клетка? Какие ее функции?
4. В чем отличие ситовидных трубок от сосудов?
5. Как долго функционируют ситовидные трубки и сосуды и с чем связано прекращение их деятельности?
6. В чем отличие сосудов от трахеид?
7. Почему кольчатые и спиральные сосуды свойственны молодым органам растений, а пористые, сетчато-пористые, лестничные — более старым?
8. Какие сосуды имеют наименьший диаметр и какие наибольший?
9. Какие перфорации между члениками сосудов являются более примитивными?