Проводящая ткань растений как называется - Домашний мастер Dach-Master.ru
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проводящая ткань растений как называется

Особенности строения проводящей ткани растений. Проводящая ткань растений: строение

Как и в организме животных, у растений есть отдельные транспортные механизмы, которые отвечают за доставку питательных веществ к отдельным клеткам и тканям. Сегодня мы обсудим особенности строения проводящей ткани растений.

Что это такое?

Проводящими тканями называются те, по которым происходит движение растворов питательных веществ, необходимых для роста и развития растительного организма. Причиной их возникновения является выход первых растений на сушу. От корня к листьям, как несложно догадаться, движется восходящий поток растворов солей и прочих питательных веществ. Соответственно, нисходящий ток идет в обратном направлении.

Восходящий транспорт осуществляется посредством сосудов в древесной ткани (ксилемы), нисходящая же доставка – при помощи ситовидных структур в лубе коры (флоэмы). В общем-то, форма ксилем напоминает таковую у сосудов животных. Клетки их вытянутые, имеют выраженную продолговатую форму. Какие еще имеются особенности строения проводящей ткани растений?

Какими они бывают?

Следует знать, что бывают первичные и вторичные ткани этого типа. Давайте приведем стандартную их классификацию, так как наглядность материала улучшает его усвоение. Итак, вот простейшее строение проводящей ткани растений, представленное в виде таблицы.

Все клетки в этой группе тканей практически одинаковы как по своей форме, так и по структуре

Клетки имеют общее происхождение, но существенно различаются по своей структуре и выполняемым ими функциям

Как вы уже могли понять, ксилема и флоэма относятся к сложной разновидности, так как за счет своей разнородной структуры они способны выполнять столь широкий перечень функций.

Ткани запасающего типа

Трахеиды, стандартные сосуды

Паренхима древесного волокна

Трубки «сита», клетки-спутницы

Лубяные клетки и волокнистые структуры

Паренхима лубяного типа

Как видите, строение проводящей ткани растений какой-то сверхъестественной сложностью не отличается. Во всяком случае, оно намного проще, нежели у клеток высших млекопитающих.

Ксилема. Проводящие элементы

Самыми древними элементами всей проводящей системы являются трахеиды. Так называются клетки специфической формы, имеющие характерные, заостренные концы. Именно от них впоследствии произошли обычные волокна древесной ткани. Они имеют одеревеневшую стенку значительной толщины. Форма трахеид может быть самой различной:

  • Кольцевидной.
  • Спиралевидной.
  • В форме точек.
  • Споровидной.

Следует помнить, что попутно растворы питательных веществ фильтруются сквозь множественные поры, а потому скорость передвижения их достаточно низкая. Эти важные особенности строения проводящей ткани растений зачастую забываются.

У каких растений может встречаться этот структурный элемент?

Трахеиды можно найти практически у всех высших спорофитов. Низшие голосеменные в большинстве своем также имеют в своем строении данные структурные элементы, причем даже у них они играют весьма важную роль. Дело в том, что прочные стенки трахеид, о которых мы уже писали выше, позволяют им выполнять не только непосредственно проводящую функцию, но и быть поддерживающей, механической структурой. Это – важнейшие особенности строения проводящей ткани растений, от которых зависит очень многое.

Зачастую только они являются единственной поддерживающей структурой, которая придает телу растения необходимую прочность. Любопытно, но у всех (!) хвойных растений в древесине полностью отсутствуют какие-то специальные механические ткани, а прочность обеспечивается исключительно за счет обсуждаемых нами трахеид. Длина этих удивительных проводящих элементов может колебаться в пределах от нескольких миллиметров до пары сантиметров.

В общем-то, изучает эти особенности строения проводящей ткани растений 5 класс любой общеобразовательной школы, но зачастую вопрос о самых длинных сосудах у растений ставит в тупик даже студентов биологических факультетов.

Характеристика сосудов

Они представляют собой весьма характерный элемент в ксилеме покрытосеменных растений. На вид похожи на длинные и пустотелые трубки. Каждая из них образуется в результате слияния удлиненных клеток по схеме «стык в стык». Члеником сосуда называется каждая клетка, которая по своему функциональному строению повторяет таковое для трахеиды. Отметим, впрочем, что членики намного шире и короче их.

Какая категория учащихся должна знать эти особенности строения проводящей ткани растений? 5 класс, который начал проходить ботанику и строение растительного организма, уже может ориентироваться в самых простых вопросах данной тематики.

Процесс образования сосудов

Та ксилема, которая первой появляется в процессе развития растения, называется первичной. Ее закладка происходит в корнях и верхушках молодых побегов. В этом случае разделенные членики сосудов ксилемы нарастают на дистальных концах прокамбиальных тяжей. Сам сосуд появляется после их слияния, вследствие разрушения внутренних перегородок. Убедиться в этом можно, если посмотреть на их срез в микроскоп: внутри сохраняются ободки, которые как раз таки и являются остатками разрушенной перегородки.

Давайте вспомним, благодаря каким структурным элементам образуется проводящая ткань растений, и какие из них находятся в корне растения:

  • Эпидермальная оболочка.
  • Кора.
  • Протодерма, которая постоянно обновляет лежащие выше слои.
  • Верхушечная меристема, которая является основной зоной роста корня растения.
  • От повреждения более нежные ткани защищает корневой колпачок.
  • Внутри корня располагаются знакомые нам ткани: ксилема и флоэма.
  • Образуются они, соответственно, из протофлоэмы и протоксилемы.
  • Эндодермис.

Протоксилема (то есть первые образующиеся в растении сосуды) появляется на самой верхушке всех молодых осевых органов. Образование происходит непосредственно под слоем меристемы, то есть там, где окружающие сосуды клетки продолжают интенсивно расти и вытягиваться. Нужно отметить, что даже зрелые сосуды протоксилемы ничуть не теряют своей способности к растягиванию, так как их стенки еще не подверглись одеревенению.

Как правило, проводящие ткани цветковых растений такому уплотнению подвергаются достаточно рано, так как стеблю требуется поддерживать достаточно массивный и уязвимый цветок.

Вспомним, что отвечает за процесс затвердевания? Лигнин. А он как раз-таки откладывается в стенках «заготовок» сосудов или по спирали, или в кольцевидном направлении. Такое положение его слоев не мешает сосуду растягиваться. В то же время этот лигнин обеспечивает вполне приличную прочность молодых сосудов в растении, что предотвращает их разрушение при механических воздействиях.

Вот почему так важна проводящая ткань растений. Рисунок, который имеется на страницах этой статьи, наверняка поможет вам лучше разобраться в этом вопросе, так как наглядно демонстрирует основные составные части упомянутой ткани.

Образование метаксилемы

В процессе роста появляются новые сосуды, которые значительно раньше подвергаются процессу одеревенения. Когда заканчивается их формирование в зрелых частях растения, завершается процесс роста метаксилемы. Как же должен рассматривать школьный курс биологии строение проводящей ткани растений? 5 класс, как правило, ограничивается только лишь тем фактом, что в растительной ткани существуют сосуды. Дальнейшее изучение входит в программу обучения более старших учеников.

В то же время первые сосуды, образовавшиеся из протоксилемы, сначала растягиваются, а потом разрушаются полностью. Зрелые же структурные образования, которые возникли из метаксилемы, к вытягиванию и росту не способны в принципе. Фактически, это мертвые, очень жесткие и полые трубки.

Несложно обдумать биологическую целесообразность протекания данного процесса именно в этом направлении. Если бы эти сосуды появлялись сразу, они бы очень сильно мешали формированию всех окружающих тканей. Как и у трахеид, утолщения стенок сосудов можно разделить по следующим группам (в зависимости от их формы):

  • Кольцевидные.
  • Спиралевидные.
  • Лестничной формы.
  • Сетчатые.
  • Пористые.

Обращаем ваше внимание на то, что длинные и полые трубки ксилемы, обладающие достаточной механической прочностью – идеальная система для доставки воды и растворов минеральных солей на большие расстояния. Движение жидкости по их полостям ничем не затрудняется, потерь воды и питательных веществ практически нет. Какие еще есть особенности строения проводящей ткани растений? Биология (6 класс среднего образовательного учреждения) рассматривает также взаимную проводимость стенок ксилем. Поясним.

Будучи схожими в этом отношении с трахеидами, ксилемы допускают перетекание воды посредством пор в стенках. Так как в них много лигнина, они обладают высокой механической прочностью, а потому не деформируются, кроме того, практически полностью отсутствует риск разрыва под давлением питательной жидкости. Впрочем, мы уже говорили о высочайшей важности этой отличительной черты ксилем, благодаря которой древесина многих видов деревьев отличается высокой прочностью и упругостью.

Именно крепким и одновременно упругим ксилемам обязаны своей прочностью древние корабли. Незаметная, но прочная проводящая ткань растений обеспечивала высокую стойкость длинных сосновых мачт, которые крайне редко ломались даже в самые жестокие штормы.

Проводящие структуры флоэмы

Рассмотрим проводящие материи, которые имеются в тканях флоэмы.

Во-первых, ситовидные структуры. Материалом их возникновения служит прокамбий, локализованный в первичной флоэме. Отметим, что при росте окружающих ее тканей протофлоэма быстро растягивается, после чего часть ее структур отмирает и полностью перестает функционировать. Метафлоэма заканчивает свое созревание после (!) того, как рост растения прекращается.

Прочие особенности

Так какие еще следует знать особенности строения проводящей ткани растений? 7 класс общеобразовательной школы должен изучать, помимо всего вышеописанного, еще и характеристики ситовидных структур, а также их клеток-спутниц. Давайте распишем этот вопрос чуть более подробно.

Особенно характерное строение имеют членики ситовидных структур. Во-первых, у них чрезвычайно тонкие клеточные стенки, в состав которых входит довольно много целлюлозы и пектина. Этим они сильно напоминают клетки паренхимы. Важно! В отличие от последних, при созревании у этих клеток полностью отмирает ядро, а цитоплазма «усыхает», распределяясь тонким слоем по внутренней стороне клеточной оболочки. Как ни странно, но они остаются живыми, но при этом зависящими от клеток-спутниц (напоминает отношения нейронов и астроцитов в мозгу животных).

Конечно, эти особенности строения проводящей ткани растений 6 класс обычно не рассматривает, но знать их полезно. Хотя бы для того, чтобы представлять себе сущность процессов, протекающих в растительном организме.

Ситовидные трубки и клетки-спутницы

Итак. Членики ситовидной структуры образуют одно целое, будучи тесно связаны между собой. Клетка-спутница уникальна своей цитоплазмой: она у нее крайне густая, содержит огромное количество митохондрий и рибосом. Вы могли догадаться, что они обеспечивают питание не только самой «спутницы», но и ситовидного членика. Если клетка-спутник по какой-то причине погибает, гибнет и вся структура, которая с ней связана.

Сами ситовидные трубки легко отличить по имеющимся в их составе ситовидным пластинкам. Даже при использовании слабого светового микроскопа их легко можно заметить. Возникает она в том месте, где образовалось сочленение торцевых концов двух члеников. Логично, что эти пластинки находятся точно по ходу роста этих самых члеников.

Типы проводящих пучков

Есть ли еще какие-то особенности строения проводящей ткани растений? Биология считает таковыми некоторые аспекты строения проводящих пучков, о которых мы вкратце расскажем.

В любом высшем растении можно встретить упомянутые структуры. Они представляют собой специфического вида тяжи, располагающиеся в корнях, молодых побегах и прочих частях, которые постоянно растут. В состав этих пучков входят сосуды и уже обсуждаемые нами ранее механические поддерживающие элементы. Каждая такая структурная единица состоит из двух частей:

  • Древесинный отдел. Состоит из сосудов и одеревенелых волокон.
  • Лубяной участок. В его состав входят ситовидные структуры и лубяные волокна.

Очень часто вокруг пучков образуется защитный слой, который состоит из живых или отмерших паренхимных клеток. Кроме того, по своему строению они делятся на два вида:

  • Полные — содержат ксилему и флоэму.
  • Неполные — в их структуру входит только одна из этих тканей.

Классификация проводящих пучков по Лотовой

В настоящее время достаточно распространенной является стандартная классификация Лотовой, которая подразделяет проводящие пучки на следующие разновидности:

  • Закрытые, коллатерального типа.
  • Закрытые, биколлатеральной разновидности.
  • Концентрического типа — ксилема располагается снаружи.
  • Разновидность предыдущего вида, в которой ксилема – внутри.
  • Радиальные пучки.

В общем-то, это практически все сведения, которые следует знать при изучении проводящих тканей растения в рамках школьной программы.

Проводящая ткань растений как называется

Первоначально ксилема образуется из первичной меристемы — прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.

Для корня характерен экзархный тип закладки ксилемы, для стеблей — эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

Читать еще:  Декоративная покраска стен самостоятельно

У некоторых растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий). Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм , приспособленных к сезонным изменениям климата, — периодически. В результате этого образуются хорошо выраженные годовые кольца прироста.

Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку. Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено. У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки (рис.33). Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. Поэтому после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой (метаксилемой). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое (рис.34). Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются , а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд (рис.35). Большинство покрытосеменных растений и некоторых папоротникообразных обладают сосудами.

Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам. Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.

Чаще всего встречаются окаймлённые поры (рис.35-1). У них канал, обращённый в полость клетки, образует расширение — камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение — торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.

Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, поэтому такую пористость называют лестничной). Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.

С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений. Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними (рис.36). Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.

В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у которых они имеются наряду с трахеидами. Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.

Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа (лат. liber — луб, forma — форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки. Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.

В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины. Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей — это тяжевая паренхима. В другом случае паренхима образует горизонтальные лучи. Они называются сердцевинными лучами, так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.

Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками. Основные клетки проводящие, называются ситовидными элементами (рис.37). Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт. По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений. А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.

Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.

У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных он представлены ситовидными клетками. Ситовидные поля в клетках рассеяны по боковым стенкам. В протопласте сохраняется несколько деструктированное ядро.

У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки. В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница, образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки (рис.38). Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.

Структура зрелых ситовидных клеток имеет некоторые особенности. Отсутствует вакуоль, поэтому цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.

Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которых откладывается полисахарид каллоза. Поры располагаются группами, образуя ситовидные поля. У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку (рис.39). Если на ней находится одно ситовидное поле, её называют простой, если несколько — сложной.

Скорость передвижения растворов по ситовидным элементам составляет до 150см ? час. Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.

Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они имеются, то ситовидные элементы работают в течение всей жизни растения.

Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

Проводящая ткань растений как называется

Учимся вместе

Новости

Летняя школа по молекулярной биологии фонда «Династия» при поддержке фонда «Современное естествознание»

В работе школы принимала участие ученица 11-г класса лицея 214 Синдаловская Мария.

Номинация «Наставник будущих ученых»

Селеннова Татьяна Викторовна стала победителем Всероссийского конкурса учителей биологии, математики, физики и химии 2013 года, проведенного Фондом «Династия» совместно с Фондом » Современное естествознание», в номинации «Наставник будущих ученых».

Лекция 4. Ткани растений

Подробности Обновлено 01.10.2012 01:54 Просмотров: 7697

Тканью называют группу клеток, которые имеют одинаковое строение, одинаковое происхождение и выполняют в организме сходные функции. В соответствии с формой, строением и характером соединения ткани растений могут быть рыхлыми и плотными живыми и мертвыми. Принято выделять следующие группы:образовательные или меристемы, основные, покровные, механические, проводящие, выделительные. Все они за исключением меристем называются постоянными.

Меристемы.

По происхождению меристемы бывают первичные и вторичные. Первичные образуются в результате дробления зиготы. Зародыш состоит только из нее. У взрослого растения она сохраняется только в определенных участках. Вторичная развивается в онтогенезе причем начало ей дает основная или покровная ткань либо первичная меристема. Из вторичной развиваются все вторичные постоянные ткани.

По расположению различают:верхушечные или апикальные, боковые или латеральные и вставочные.

Апикальные находятся на верхушках стеблей или кончиках корней и обеспечивают рост этих органов в длину. Верхушечная меристема называется конусом нарастания. Вершина конуса является точкой роста. У большинства растений здесь локализованы инициальные клетки, которые находятся в постоянном делении. В корне конус нарастания защищен корневым чехликом. В стебле мелкими налегающими друг на друга листьями которые вместе с верхней частью стебля образуют почку.

По происхождению верхушечные меристемы всегда первичны.

Боковые меристемы залегают сбоку органов и обеспечивают рост в толщину. К ним относится камбий.

Вставочные меристемы находятся в стеблях злаков над узлами в основание листа. Они определяют рост растения и способствуют выпрямлению злаков при полегании.

Помимо основных меристем существует раневая меристема которая возникает после повреждения. Клетки окружающие раневой участок делятся и формируют раневую ткань каллюс. Дифферинцировка приводит к образованию постоянных тканей.

Основные ткани.

Занимают основной объем. Прежде всего питающие но могут выполнять другие функции. Клетки живые, паренхиматозные, распологаются рыхло, с большими межклетниками. Оболочки тонкие целлюлозные могут утолщаться и древесневеть.

Особенностью основной ткани является то что при определенных условиях она дает начало вторичной меристеме.

Ассимиляционная паренхима выполняет функцию образования органических веществ в ходе фотосинтеза. Распологается в листьях и стеблях прямо под покровной тканью.

Запасающая паренхима характерна для депонирующих частей клубней, корневищ, луковиц, а также для плодов и семян. Вещества откладываются в виде крахмала инулина, белков масел.

Поглащающая паренхима характерна для всасывающей части корня. Передает воду и миниральные вещества от корневых волосков к внутренним тканям.

Аэренхима развивается у растений в условиях переувлажнения. Характеризуется крупными межклетниками с воздухом. Обеспечивает плавучесть водных и болотных растений.

Водоносная паренхима характерна для растений засушливой зоны. Клетки заполнены водой.(кактусы, агавы, алоэ)

Покровные ткани.

На поверхности всех органов растений находятся покровные ткани, которые выполняют функцию защиты, излишнего испарения, проникновения бактерий.

В зависимости от происхождения выделяют следущие типы тканей:кожица, пробка и корка.

Кожица образуется из первичной меристемы и покрывает все органы растения в начале их развития. В дальнейшем у многолетних растений она замещается пробкой. Кожицу листьев и стеблей называют эпидермисом, а корня эпиблемой. Клетки эпидермиса живые, с крупной центральной вакуолью, содержат лейкопласты. Внешние стенки как правило утолщаются и пропитываются кутином. На воздухе он застывает и превращается в кутикулу. На поверхности часто формируется восковой налет .Клетки прочно соединяются друг с другом гораздо толще наружной особенно в углах. В замыкающих клетках находится много хлоропластов которые на свету активно фотосинтезируют, что приводит к накоплению органики и повышению осмотического давления. Это приводит к диффузии воды из окружающих клеток и к увеличению объема замыкающих клеток. При повышение тургора происходит растяжение более тонкой внешней стенки замыкающих клеток. Клетки искривляются и щель открывается. При потере воды клетки выпрямляются и щель замыкается.

Устьица открываются на свету и к вечеру постепенно закрываются. В основном устьица располагаются на нижней поверхности листьев, что способствует меньшему испарению. У некоторых растений встречаются водные устьица или гидатоды которые секретируют воду.

Эпиблема корня не является защитной тканью. Она выполняет функцию всасывания из почвы воды с растворенными веществами. Поэтому они имеют тонкую оболочку и обладают способностью образовывать корневые волоски. Для эпиблемы характерно отсутствие кутикулы и устьиц.

Читать еще:  У каких растений стержневая корневая система примеры

Пробка. Это вторичная покровная ткань которая заменяет кожицу на многолетних растениях в корнях и на стеблях. Пробка является надежной защитой для зимующих органов растений. Пробка возникает за счет пробкового камбия начало которому дает эпидермис либо основная ткань.

Следовательно, сформировавшаяся пробка это мертвая ткань. Полости клеток заполнены воздухом, смолами дубильными веществами.

Для сообщения с внешней средой на пробке возникают чечевички. Формируются чечевички с появления бугорка, на вершине которого затем наблюдается разрыв. Чечевички закладываются под устьицами эпидермиса, который затем отмирает и сбрасывается. В месте чечевички камбий дифферинцируются в выполняющию ткань которая прорывает верхушку чечевички. На зиму чечевички закрываются специальным замыкающим слоем.

Представляет собой комплекс отмерших тканей, которые покрывают стволы деревьев. Корка образуется за счет отмирания тканей сверху заложившейся пробки. Корку принято рассматривать как целостную ткань и называть третичной покровной тканью.

Газообмен в корке как и в пробке осуществляется посредством чечевичек.

Механические ткани.

Функция заключается в придании прочности, защите от повреждений, от излома и разрыва. Однако прочность создается не только этими тканями но и всем комплексом тканей и тургором клеток.

Характерной чертой этих тканей является утолщенность их стенок, которые пропитываются лигнином и древесневеют, что увеличивает их прочность.

Лубяные волокна распологаются в периферической части органов, отличаются значительной длиной. Они плотно соединены между собой и формируют лубяной пучок. Хорошо развиты у льна.

Древесинные волокна мелкие их оболочки утолщаются больше чем у лубяных. Клетки сохраняют цитоплазму и имеют тонкие, хотя и одревесневевшие оболочки.

Склерииды или каменистые клетки. Встречаются в различных органах растения листьях, плодах, корнях иногда образуя скопления. Это мертвые клетки с плотной оболочкой.

Проводящие ткани . Функция заключается в проведении воды с растворенными питательными вещ-вами. Клетки имеют трубчатую форму поперечные перегородки между ними разрушаются, или пронизаны многочисленными отверстиями.

От корней к кроне поднимается вода с растворенными минеральными веществами, а от кроны транспортируется вода с органикой.

Различные элементы проводящей системы разделяют на:

По сосудам поднимается вода с минеральными веществами. В это процессе учавствуют трахеиды. По ситовидным трубкам различные продукты фотосинтеза. Возможно перемещение органики и по ситовидным трубкам в точки роста цветкам, и другим органам расположенным надземных частях растения.

Сосуды состоят из вертикального ряда расположенных друг над другом клеток, между которыми разрушаются межклеточные перегородки.

Трахеиды в отличии от сосудов это отдельные замкнутые клетки с заостренными концами. Передвижение воды происходит через разнообразные поры и значительно медленнее чем по сосудам. Благодоря утолщению стенок эти элементы могут выполнять опорную функцию придавая растению прочность, причем утолщения предохраняют проводящие элементы от сдавливания.

Сосуды и трахеиды могут проводить органические вещ-ва или так называемую пасоку. Это наблюдается весной когда ферментированные вещ-ва поднимаются от корней, корневищ, и других подземных частей к надземным.

По ним происходит транспорт органики. Они состоят из живых клеток расположенных в виде вертикального ряда. Ядра мелкие обычно разрушаются при формирование трубки. Поперечные перегородки пронизаны порами и называются ситовидными пластинками. Через отверстия тянутся плазмодесмы. Оболочки клеток тонкие, на боковых стенках находятся многочисленные отверствия. У большинства растений рядом с трубками залегают клетки спутницы с которыми они связаны плазмодесмами. В клетках спутницах находится густая цитоплазма и ядро. Эти клетки обнаружены у всех растений кроме хвойных, мхов ипапоротников.

Ситовидные трубки функционируют один вегетационный период, а затем поры закупориваются и на них образуется мозолистое тело. У некоторых растений мозолистые тела могут рассасыватся, но у большинства трубки отмирают.

Выделительные ткани. Они служат для накопления метаболитов или выведение конечных продуктов обмена. Накопление происходит как в самой клетки так и в межклеточном вещ-ве. К ним относятся смоляные и секреторные ходы, железки, нектарники, железки выделяющие воду.

Проводящие пучки.

Ткани распологаются не изолированно а обычно формируют сложные комплексы, в которых они связаны единством происхождения и положения. К таким комплексам относятся сосудисто-проводящие пучки.

Проводящий пучок состоит из комплекса трех тканей:проводящей, механической и основной. Пучки пронизывают все органы растений и заканчиваются в листьях.

Проводящий пучок состоит из двух частей-флоэмы или луба, и ксилемы или древесины. Флоэма распологается к поверхности органа, а ксилема к центру. В состав флоэмы входят ситовидные трубки с клетками спутницами(проводящая ткань),лубяная паренхима(основная ткань) и лубяные волокна(механическая ткань)

Ксилема содержит сосуды и трахеиды, древесинную паренхиму и древесинные волокна. Поэтому проводящие пучки называются сосудисто-волокнистыми. Кроме проводящей функции эти ткани в известной степени выполняют механическую функцию.

Если между ксилемой и флоэмой остаются клетки способные к делению или пучковый камбий то такой пучок называют открытым. В этом случае элементы ксилемы и флоэмы продолжают образовыватся. Открытые пучки характерны для двудольных и хвойных стебли которых способны к утолщению. Закрытые пучки наблюдаются у однодольных и очень редки у двудольных.

ОРГАНЫ РАСТЕНИИ , ИХ ФУНКЦИИ И СТРОЕНИЕ

Каждое растение представляет собой сложный организм, живое существо, жизнедеятельность которого неразрывно связана с окружающей средой. Организм большинства растений расчленен на отдельные части, которые называются органами (корень, стебель, лист и др,). Каждый орган выполняет определенные, свойственные ему функции, и в то же время все органы в своей деятельности вза имосвязаны и тем самым обеспечивают единство растительного орга низма.

Расчленение тела растения на органы, которые мы видим в на стоящее время у высших растений, появилось не сразу. Отдельные органы у растений формировались в процессе длительного истори ческого развития растительного мира в связи с переходом растений из воды на сушу, с приспособлением их к новым условиям, к наземному образу жизни. Было время, когда растения не имели диффе ренциации на отдельные органы. Низшие растения (бактерии, водо росли, грибы) как наиболее древние организмы не имеют и теперь расчленения тела на отдельные органы в противоположность выс шим растениям.

Появление у высших наземных растений отдельных органов — прогресс в развитии растительного мира на Земле, так как наличие органов обеспечило растениям нормальное развитие в условиях суши. Функции органов неразрывно связаны с особенностями их внешнего и внутреннего строения. Благодаря корням растения по лучили возможность прикрепляться к почве, сохранять вертикаль ное положение и потреблять из почвы воду и растворенные в ней минеральные вещества.

Большая поверхность листьев способствует интенсивному про теканию фотосинтеза, газообмена и испарения растениями воды. По стеблю передвигаются растворенные питательные вещества из корней в листья и из листьев в корни. В мире растений встречается большое разнообразие в строении отдельных органов растений.

В зависимости от выполняемых функций органы растений объе диняются в 2 большие группы: вегетативные — корень, стебель, лист и все их видоизменения; репродуктивные — цветок, соцветие, плоды и семена .

При помощи вегетативных органов у растений осуществляются процессы питания (почвенное и воздушное), рост и вегетативное размножение.

Тело всякого высшего растения состоит, как правило, из глав ной оси, которая несет на себе боковые придатки. У главной оси растения различают 2 резко отличающиеся по своей структуре и функциям части: надземную — стебель и подземную — корень. Корень и стебель являются осевыми органами. К боковым придаткам относятся листья, шипы, волоски и др.

Исторически органы растений появились не все сразу. Сначала возник стебель, затем листья и в последнюю очередь — корень (стебель—лист—корень).

Первичными наземными растениями были псилофиты. Эти вы мершие растения представляли собой небольшие, до 3 м высоты, древесные растения, с развитой надземной частью — стеблем без листьев, или они были покрыты вместо настоящих листьев мелкими чешуйками —• видоизмененными листьями. Псилофиты не имели еще корней. В подземной их части были развиты корневища, которые несли ризоиды одноклеточ ные выросты, предшественники корней.

У современных высших ра стений все указанные вегета тивные органы заложены уже в зачаточном состоянии в за родыше семени, при прораста нии которого сначала появля ется корень, затем стебель и, наконец, лист (корень—стебель —лист), т. е. появление орга нов растения при индивиду альном его развитии происхо дит в ином порядке, чем по являлись они у растений в ис торическом прошлом.

Химия, Биология, подготовка к ГИА и ЕГЭ

Ткани растений

Тканью называется группа клеток, структурно и функционально взаимосвязанных друг с другом, сходных по происхождению, строению и выполняющих определенные функции в организме.

Чем выше сложнее организация растения, тем больше у него видов тканей.

У водорослей их не было как таковых, у папоротников уже есть проводящие ткани, а у покрытосеменных их около 80 видов…

Ткани могут быть простыми — состоящими из одного вида клеток и сложными — комбинация разных видов клеток.

Самые основные и важные для растительного организма ткани:

  • образовательные,
  • покровные,
  • проводящие,
  • механические и
  • основные

Начнем с покровной ткани растений

Если говорить о функциях этого типа ткани, то их три основных:

  • защита от воздействия окружающей среды (от высыхания, попадания вредных микроорганизмов, защита от интенсивного солнечного воздействия, и
  • обмен веществ с окружающей средой ( в том числе, газообмен)
  • восприятие раздражения.

Эпидермис

Клетки плотно соединены между собой, кроме тех, что образуют устьица, клеточная стенка утолщена. Поверхность эпидермиса зачастую бывает выстлана слоем восковых веществ и волосками — это кутикула.

Кутикула усиливает защитные свойства эпидермиса, но при этом снижается интенсивность обмена веществ, поэтому появляется необходимость в устьицах.

Обратите внимание, что устьица в эпидермисе имеются только в тканях высших растений.

Есть такая закономерность — чем толще кутикула растения. тем больше в эпидермисе устьиц, и наоборот, если кутикулы нет, отпадает потребность в устьицах.

В частях растения, погруженных в воду, а также в корнях кутикулы и устьиц нет.

Перидерма

Приходит на смену зеленым частям стебля, когда дерево «взрослеет» — его ствол становится коричневым.

Ткань многослойная и сначала ее клетки живые, затем отмирают.

Меристемаобразовательная ткань растения из одного вида клеток. Эти клетки постоянно делятся, поэтому обеспечивают рост растения как в длину, так и в ширину. Слой пробки не является постоянным, периодически в нем возникают разрывы — они проявляются на поверхности в виде бугорков — чечевичек, основная функция которых транспирация.

Кора (корка)

Полностью омертвевшие клетки.

Периферические слои корки отпадают, и старый слой феллогена отмирает. Вместо него дальше от центра закладывается новый слой, и, таким образом, формируется несколько перидерм.

Роль корки в жизни растения:

  • вместе с коркой растение освобождается от накопившихся вредных продуктов метаболизма;
  • защита от солнечных ожогов, перегрева, испарения воды, вымерзания, вредителей и инфекционных агентов

Образовательная ткань растений

(меристема — в переводе с латинского — «делимый»)

Клетки этой ткани живые, недифференцированные, постоянно делящиеся

Запасающая ткань растений

Паренхима представляет собой целую группу более или менее специализированных тканей, которые заполняют пространство внутри тела растений между проводящими и механическими тканями. Клетки живые, имеют округлую или слегка вытянутую форму. Характерно развитие межклетника.

Аэренхима (воздухоносная ) — в межклетниках находится воздух. Характерна для растений заболоченных районов, для которых газообмен затруднен.

Ассимиляционная ( фотосинтезирующая) паренхима — клетки с хлоропластами, обеспечивают фотосинтез, соответственно, располагается эта ткань в тех частях растения, которые освещены.

В листе, например, есть губчатая и столбчатая фотосинтезирующая паренхима — по форме клеток.

Запасающая паренхима — служит для запаса питательных веществ, которые временно не используются растением. Характерная для многолетних растений.

Многие растения запасают не только органические вещества, но и воду,тогда это водоносная паренхима.

У растений — суккулентов она хорошо развита.

Механические ткани растения

Колленхима — вытянутые, живые, длинные клетки. Ткань, содержащая много целлюлозы и способная к растяжению. Служит для укрепления молодого растения, побегов, стеблей. Клетки не одревесневают.

Склеренхима — присуща, в основном, высшим растениям. Клетки имеют ОЧЕНЬ толстые клеточные стенки. Это длинные волокна, в основном, клетки омертвевшие. Оболочки клеток одревесневают, когда растение завершает свой рост. Эта ткань дает возможность растению не просто стоять прямо, а выдерживать порывы ветра или еще какие-то нагрузки.

Проводящие ткани растения:

По ним больше всего вопросов на экзамене…

Проводящие ткани относят к сложным, т.к. там присутствуют разные виды клеток. Это и механические, и выделительные, и запасающие… Развиваются они из апикальных меристем (образовательной ткани) растения.

Читать еще:  Подготовка стен к нанесению декоративной штукатурки

Ксилема (древесина) — отвечает за восходящий ток воды и растворенных в ней минеральных веществ от корней к листьям.

Клетки ксилемы утолщены, имеют боковую перфорацию, стенок между клетками нет, и, располагаясь друг над другом, они образуют полые сосуды. Если боковых «пор» нет, то такую клетку называют трахеидой.

Сосудами обладают большинство покрытосеменных растений и некоторые папоротникообразные.

У голосеменных передвижение воды происходит исключительно с помощью трахеид.

Древесина — это цепочки из прилегающих друг к другу длинных мёртвых водопроводящих клеток. В местах соприкосновения у них имеются поры, по которым и передвигаются вещества — из клетки в клетку по направлению к листьям. Так устроены трахеиды и сосуды высших растений.

Предполагается, что сосуды произошли от трахеид.

Флоэма (луб) — обеспечивает ток органических веществ. Это нисходящее движение.

Клетки образуют ситовидные трубки — их поперечные стенки густо пронизаны отверстиями. Ядер в таких клетках нет, рибосом, вакуолей нет, хлоропластов тоже нет, но они сохраняют живую цитоплазму. Они живут недолго, быстро отмирают, на их место становятся новые. Имеют клетки — спутницы .

Клетки — спутницы — специальные клетки или несколько клеток, прилегающие к длинной боковой стороне клетки ситовидной трубки, образовавшиеся при формировании последних. Содержат и ядро, и хлоропласты, присоединяются к стенке с помощью плазмодесмы, обеспечивают сосуды фитогормонами и АТФ.

Этот подвид ткани есть как у высших, так и у низших растений.

Выделительные ткани

Вообще, выделительной функцией обладает любая живая клетка ( это часть ее обмена веществ), но есть клетки, специализирующиеся только на этом.

Обычно это клетки небольшого размера с большой сетью ЭПС и развитыми аппаратами Гольджи. Центральная вакуоль может быть очень слабо выражена.

Наружные секреторные ткани — производные покровной ткани эпидермы. Представлены, в основном, разнообразными железистыми волосками (нектарники, пищеварительные волоски, солевые железы и т.д.)

Внутренние выделительные ткани — разбросаны по всему телу растения и не выводят вещества на поверхность, за пределы организма, накапливают вещества.

Это смоляные ходы, млечники и т.п.

А вот этот рисунок нужно знать очень хорошо. Еще ни один экзамен без него не обошелся…

Ткани растений

Что такое ткани растений

Растительными тканями называют сходные по строению и происхождению группы клеток, выполняющие идентичные функции и назначения. Многим известно о широкой распространенности растений на Земле. Они окружают нас повсюду, встречаются в местах, пригодных для жизни и здорового роста.

Произошедший процесс эволюции, когда растения находились в водных условиях, а затем вышли на земную поверхность, вынудил их на появление предохраняющих эпителий. Среда обитания изменилась, они нуждались в постоянной защите от непостоянства погоды и влияющих природных изменений. Закрепившись корнями в почву, нижняя часть тела питалась почвенными минералами, дающими рост и лиственное покрытие, верхняя же насыщалась надземным воздухом.

Растения постепенно привыкали к новой окружающей среде, обновляясь и акклиматизируясь. Структура и строение становились сложнее, стали появляться многочисленные разнообразные ткани, у некоторых растений достигающие до нескольких десятков видов. Под снятой сухой коркой дерева, можно увидеть более светлую, немного рыхлую кору. Твердые и мягкие слои и будут различным эпидермисом, играющим в жизни растений свою определенную роль. Выделяют несколько самых основных групп растительных оболочек:

  • простая – состоящая из клеток одного вида (меристема, паренхима, колленхима);
  • сложная – включающая разные и отличающиеся строением клетки (флоэма, ксилема).

Функции тканей растений и виды

Существует несколько типов видоизмененных растительных тканей, приспособленных к выполнению одной или одновременно нескольких важнейших для растительных организмов функций. У каждого вида есть свое определенное предназначение и роль, поставленная задача, определенная природой. Ткани делятся:

  • покровные – защищают растительные организмы от плохих погодных условий (высыхания, зараженности грибками и бактериями), способствуют газообмену, фотосинтезу;
  • проводящая – обеспечивает проведение влаги от корневой системы к стеблям и листьям, насыщая их минералами и органическими веществами;
  • механические – осуществляют укрепление и упругость, образовывая защиту в виде каркаса, придавая черенковую прочность;
  • основные – создают главную основу всех органов растений, накапливая и запасая припасенные полезные вещества (белки, жиры, крахмал, глюкозу, углеводы), способствуют постоянному удержанию влаги, воздухоносной вентиляции;
  • образовательные – образовывают новые растения, благодаря процессу деления и росту, появляются многочисленные стебли и ответвления;
  • секреторные – способны вырабатывать, выделять и насыщать различные плоды соком и маслами, насыщая листья, цветки, ягоды, особенным ароматом.

Образовательная ткань растений

Характеризуется мелкими недифференцированными живыми клетками, имеющими тонкую клеточную оболочку, и большим ядром в центре. Делятся на:

первичные – формирующиеся в зародыше;

верхушечные – расположены вверху побегов;

вторичные – увеличение толщины стебля;

боковые – обеспечивающие ширину корней;

вставочные – находятся в стеблевых междоузлиях, обеспечивая появление и произрастание побегов, листочков;

раневые – образуются на поврежденных участках.

Благодаря данному подвиду возможен быстрый рост растительных организмов. Небольшие, тонкостенные образовательные клетки способствуют увеличению растений не только ввысь, но и в ширину. Некоторые из них зачастую трансформируются в другие ткани. Обладают способностью постоянного деления. Первичные меристемы представляют зачаток растения, вторичные же размещаются на концах стеблей.

Основная ткань растений

Другое название основной ткани – паренхима. Наименование говорит о важности и главенстве одноименной ткани. Без нее не может существовать ни одно растение. Она также имеет несколько подвидов:

  1. Водоносная – клетки отличаются укрупненными размерами, имеющими тонкие стенки. Одномембранные органеллы наполнены слизью, удерживающей накопившуюся жидкость. Растения, в составе которых находятся ткани с запасом воды, называют суккулентами (кактус, агава, герань, толстянка или денежное дерево). Произрастают разновидности на территориях с засушливым и жарким климатом.
  2. Воздухоносная – обеспечивает поступление кислорода и углекислого газа к находящимся под водой частям растений, тем самым делая их плавучими.
  3. Ассимиляционная – клетки содержат хлорные пласты. Хлоренхима устроилась под эпидермой, давая возможность циркуляции газов между листками и окружающей средой.
  4. Запасающая – отвечает за запас и сохранность питательных веществ, необходимых растениям в любой момент. Она расположена в центре клубней, луковиц, корнеплодов, семян, плодов.

Проводящая ткань растений

Является связующим звеном между остальными тканями. Отсутствие взаимодействия делает невозможным нормальную жизнедеятельность растений. Без проводящей ткани корневая система не сможет преобразовывать световую энергию, а ветки не получат достаточное количество влаги. Проводящая ткань делится на:

  • ксилему – отвечающую за транспортировку воды и соли от корня к побегам, цветкам и листьям. Ее омертвевшие клетки выстроены в длинные продолговатые ряды от низа к верху;
  • флоэму – производимую обратный путь сверху вниз по укрупненным, вытянутой формы клеткам, имеющих широкое отверстие. Клетки, собравшиеся воедино, образовывая трубки, получили название ситовидные. Вода под давлением поступает от корешков вверх по стволу деревьев, дойдя до вершины ручейком стекает вниз к корневищу. Осенняя пора убавляет обороты выделяющихся соков, листья начинают приобретать желтизну и опадают.

Механическая ткань растений

Она является главным веществом, влияющим на упругость, устойчивость, прочность основы растений. Благодаря свойствам механической ткани растения имеют опору, способную выдерживать сильные ветра, снегопады, ливневые дожди, защищены от ломкости и повреждений. Подобно человеческому скелету она помогает противостоять нагрузкам и растяжениям.

Тесно соприкасающиеся клетки с толстой и крепкой внешней оболочкой сопротивляются внешним силам. Месторасположение ткани при маленьком объеме достигает наибольшего механического эффекта. Различают несколько групп механических тканей:

Колленхима способствует осуществлению реакции фотосинтеза с участвующими в нем пигментами, ферментами. К пигментам относятся хлорофиллы, фикобилины и каротиноиды. Колленхима встречается в плодах различных растений, древесной коре. Ее подразделяют на составные части:

  1. Уголковую – клетки представлены угловыми шестиугольными утолщениями, между которыми стенки немного тоньше, поэтому ткань считают утолщенной с неравномерностью. Можно встретить в щавелевых листьях, тыкве, гречихе, крупножильных листках.
  2. Пластинчатую – данный вид характерен для молоденьких стебельков многочисленных деревьев. Клетки напоминают форму многогранника с параллельно вытянутой поверхностью с утолщенными внутренними и наружными стенками стеблей.
  3. Рыхлую – ранний этап развития с разъединением клеточных тканей, впоследствии образующим межклеточные промежутки. Наглядно можно рассмотреть на стеблях мать – и – мачехи, красавки.

Склеренхима представляет собой омертвевшие клетки с живым содержимым, которое потом все равно отомрет. Она намного прочнее чем предыдущая, колленхима, может выдержать больше нагрузок, содержится в органах мохообразных, сосудистых растений. При разрушении клеточной цитоплазмы и ядра происходит насыщение лигнином (ароматический полимер). Склеренхима поделена на типы:

Волокна склеренхимы.

Вытянутые и заостренные клетки из – за формы получили название прозенхимных. Плотная основа, с тесно прижатыми друг к другу клетками, имеет равномерные толстые стенки. Встречаются на всех органах растений или распространены в проводящих тканях. Названия могут меняться в зависимости от их местонахождения. Древесина – волокна древесные, луб – лубяные, возникшие на перецикличном месте – перецикличные волокна. Текстильная промышленность для производства использует льняные волокна. Из сырья получают материи и ткани, в дальнейшем попадающие на прилавки магазинов.

Склереиды наделены сильно одревесневшими клеточными стенками, пропитанными известковым раствором, кремнеземом. Равнозначный размер клеток, представленный, например, у грушевых плодов, дает право называть их брахисклереидами. Семена семейства бобовых содержат палочковидные склереиды. Чайные листы обладают расширяющимися клетками, поэтому носят название остеосклереиды. Листочки камелии по конфигурации похожи на упавшую звезду, именуются астросклереидами.

Покровная ткань растений

Предохраняющая органы от перегревания и сильного холода эпидерма, рассматривается как страж, стоящий у границ. Создает физиологический барьер, регулирующий скорость проникновения необходимых растениям полезных веществ. Такая особенность как многофункциональность, присущая покровной ткани, препятствует лишней задержки влаги, ее выделению и всасыванию. Возрастные изменения органов растений меняют также и функции покровной ткани. По функциональности они делятся на 3 типа:

  1. Регулятивные (газообмен, транспирация, мех. защита).
  2. Функция всасывания.
  3. Координация над пропуском нужных микроэлементов.

По происхождению их разделяют на первичные:

— эпидерму, состоящую из живых клеток, с прямыми стенками без хлоропластов. Поверхностную основу покрывает слой кутикулы, уменьшающий испарение и предохраняющий от вредного воздействия;

— эндодерму – расположенную на участке с первичной корой и центральным цилиндром;

— ризодерму – благодаря ей растения взаимодействуют с бактериями и грибами;

— веламен – клетки которого наполняются воздухом в сухую погоду, во время ливневых дождей – водой. Вода поступает по капиллярам через поры.

— перидерма – усложненная ткань, образующаяся в стеблях, с находящимся в ее основе феллогеном;

— ритид – многослойная перидерма способная к изменениям, может быть чешуйчатой как хвоя или кольчатой как виноград;

— экзодерма – присуща подземным органам возрастных растений.

Секреторная ткань растений

Отличается разнообразными структурными образованиями, изолирующими и выделяющими продукты метаболизма. Строение и расположение разделяет секреторную (выделительную) ткань на две группы: наружную и внутреннюю.

Наружная (экзогенная) – характеризуется наличием железистых головчатых волосков на ножке. Головка бывает одноклеточной и многоклеточной, наделенная эфирными маслами и дубильными веществами. Запах химических веществ привлекает опыляющих насекомых и отпугивает вредителей. Смола образовывается в клетках растений: хвои, сосен, кипарисов, как продукт жизнедеятельности. Выделяющие нектар железы, находящиеся внутри цветочного бутона, имеют название нектарники.

Образованные при помощи основной ткани с открытыми наружу протоками. Наличие нектара положительно влияет на привлечение птиц и насекомых, способствующих дальнейшему распространению семян. Разросшаяся эпидерма, окруженная протоками, придает нектарникам разную конфигурацию. Гидатоды – водные устьица, содействуют капельному выделению воды. Она проходит транспирацию, выделяясь в виде пара и солей. Такой процесс называется гуттацией, характерна для растений, растущих во влажных климатических зонах.

Внутренняя(эндогенная) – отлична круглой или удлиненной формой, содержащей в составе кристаллы, бальзамы, эфирные масла, смолы. Живые клетки называют идиобластами. Вместилища секреторной ткани образованы за счет схизогенных – секрет переходит и накапливается, расширяя клетки и увеличивая пазухи, и лизигенных полостей – клетки растворяются. Примером может служить кожура всем известного лимона, листья зверобоя. Млечники выполняют сразу несколько функций. Они разделены на членистые – со сложным строением и исчезающими перегородками.

Встречаются в маковых корнях, одуванчиках. Нечленистые – выглядят как единая огромная клетка, произросшая из семян, в дальнейшем растет, покрывается ветвями, пронизывает органы растений. Оболочка у них не твердеет, пластичные млечники наполнены латексом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты