Где находится проводящая ткань у растений - Домашний мастер Dach-Master.ru
11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Где находится проводящая ткань у растений

Особенности строения проводящей ткани растений. Проводящая ткань растений: строение

Как и в организме животных, у растений есть отдельные транспортные механизмы, которые отвечают за доставку питательных веществ к отдельным клеткам и тканям. Сегодня мы обсудим особенности строения проводящей ткани растений.

Что это такое?

Проводящими тканями называются те, по которым происходит движение растворов питательных веществ, необходимых для роста и развития растительного организма. Причиной их возникновения является выход первых растений на сушу. От корня к листьям, как несложно догадаться, движется восходящий поток растворов солей и прочих питательных веществ. Соответственно, нисходящий ток идет в обратном направлении.

Восходящий транспорт осуществляется посредством сосудов в древесной ткани (ксилемы), нисходящая же доставка – при помощи ситовидных структур в лубе коры (флоэмы). В общем-то, форма ксилем напоминает таковую у сосудов животных. Клетки их вытянутые, имеют выраженную продолговатую форму. Какие еще имеются особенности строения проводящей ткани растений?

Какими они бывают?

Следует знать, что бывают первичные и вторичные ткани этого типа. Давайте приведем стандартную их классификацию, так как наглядность материала улучшает его усвоение. Итак, вот простейшее строение проводящей ткани растений, представленное в виде таблицы.

Все клетки в этой группе тканей практически одинаковы как по своей форме, так и по структуре

Клетки имеют общее происхождение, но существенно различаются по своей структуре и выполняемым ими функциям

Как вы уже могли понять, ксилема и флоэма относятся к сложной разновидности, так как за счет своей разнородной структуры они способны выполнять столь широкий перечень функций.

Ткани запасающего типа

Трахеиды, стандартные сосуды

Паренхима древесного волокна

Трубки «сита», клетки-спутницы

Лубяные клетки и волокнистые структуры

Паренхима лубяного типа

Как видите, строение проводящей ткани растений какой-то сверхъестественной сложностью не отличается. Во всяком случае, оно намного проще, нежели у клеток высших млекопитающих.

Ксилема. Проводящие элементы

Самыми древними элементами всей проводящей системы являются трахеиды. Так называются клетки специфической формы, имеющие характерные, заостренные концы. Именно от них впоследствии произошли обычные волокна древесной ткани. Они имеют одеревеневшую стенку значительной толщины. Форма трахеид может быть самой различной:

  • Кольцевидной.
  • Спиралевидной.
  • В форме точек.
  • Споровидной.

Следует помнить, что попутно растворы питательных веществ фильтруются сквозь множественные поры, а потому скорость передвижения их достаточно низкая. Эти важные особенности строения проводящей ткани растений зачастую забываются.

У каких растений может встречаться этот структурный элемент?

Трахеиды можно найти практически у всех высших спорофитов. Низшие голосеменные в большинстве своем также имеют в своем строении данные структурные элементы, причем даже у них они играют весьма важную роль. Дело в том, что прочные стенки трахеид, о которых мы уже писали выше, позволяют им выполнять не только непосредственно проводящую функцию, но и быть поддерживающей, механической структурой. Это – важнейшие особенности строения проводящей ткани растений, от которых зависит очень многое.

Зачастую только они являются единственной поддерживающей структурой, которая придает телу растения необходимую прочность. Любопытно, но у всех (!) хвойных растений в древесине полностью отсутствуют какие-то специальные механические ткани, а прочность обеспечивается исключительно за счет обсуждаемых нами трахеид. Длина этих удивительных проводящих элементов может колебаться в пределах от нескольких миллиметров до пары сантиметров.

В общем-то, изучает эти особенности строения проводящей ткани растений 5 класс любой общеобразовательной школы, но зачастую вопрос о самых длинных сосудах у растений ставит в тупик даже студентов биологических факультетов.

Характеристика сосудов

Они представляют собой весьма характерный элемент в ксилеме покрытосеменных растений. На вид похожи на длинные и пустотелые трубки. Каждая из них образуется в результате слияния удлиненных клеток по схеме «стык в стык». Члеником сосуда называется каждая клетка, которая по своему функциональному строению повторяет таковое для трахеиды. Отметим, впрочем, что членики намного шире и короче их.

Какая категория учащихся должна знать эти особенности строения проводящей ткани растений? 5 класс, который начал проходить ботанику и строение растительного организма, уже может ориентироваться в самых простых вопросах данной тематики.

Процесс образования сосудов

Та ксилема, которая первой появляется в процессе развития растения, называется первичной. Ее закладка происходит в корнях и верхушках молодых побегов. В этом случае разделенные членики сосудов ксилемы нарастают на дистальных концах прокамбиальных тяжей. Сам сосуд появляется после их слияния, вследствие разрушения внутренних перегородок. Убедиться в этом можно, если посмотреть на их срез в микроскоп: внутри сохраняются ободки, которые как раз таки и являются остатками разрушенной перегородки.

Давайте вспомним, благодаря каким структурным элементам образуется проводящая ткань растений, и какие из них находятся в корне растения:

  • Эпидермальная оболочка.
  • Кора.
  • Протодерма, которая постоянно обновляет лежащие выше слои.
  • Верхушечная меристема, которая является основной зоной роста корня растения.
  • От повреждения более нежные ткани защищает корневой колпачок.
  • Внутри корня располагаются знакомые нам ткани: ксилема и флоэма.
  • Образуются они, соответственно, из протофлоэмы и протоксилемы.
  • Эндодермис.

Протоксилема (то есть первые образующиеся в растении сосуды) появляется на самой верхушке всех молодых осевых органов. Образование происходит непосредственно под слоем меристемы, то есть там, где окружающие сосуды клетки продолжают интенсивно расти и вытягиваться. Нужно отметить, что даже зрелые сосуды протоксилемы ничуть не теряют своей способности к растягиванию, так как их стенки еще не подверглись одеревенению.

Как правило, проводящие ткани цветковых растений такому уплотнению подвергаются достаточно рано, так как стеблю требуется поддерживать достаточно массивный и уязвимый цветок.

Вспомним, что отвечает за процесс затвердевания? Лигнин. А он как раз-таки откладывается в стенках «заготовок» сосудов или по спирали, или в кольцевидном направлении. Такое положение его слоев не мешает сосуду растягиваться. В то же время этот лигнин обеспечивает вполне приличную прочность молодых сосудов в растении, что предотвращает их разрушение при механических воздействиях.

Вот почему так важна проводящая ткань растений. Рисунок, который имеется на страницах этой статьи, наверняка поможет вам лучше разобраться в этом вопросе, так как наглядно демонстрирует основные составные части упомянутой ткани.

Образование метаксилемы

В процессе роста появляются новые сосуды, которые значительно раньше подвергаются процессу одеревенения. Когда заканчивается их формирование в зрелых частях растения, завершается процесс роста метаксилемы. Как же должен рассматривать школьный курс биологии строение проводящей ткани растений? 5 класс, как правило, ограничивается только лишь тем фактом, что в растительной ткани существуют сосуды. Дальнейшее изучение входит в программу обучения более старших учеников.

В то же время первые сосуды, образовавшиеся из протоксилемы, сначала растягиваются, а потом разрушаются полностью. Зрелые же структурные образования, которые возникли из метаксилемы, к вытягиванию и росту не способны в принципе. Фактически, это мертвые, очень жесткие и полые трубки.

Несложно обдумать биологическую целесообразность протекания данного процесса именно в этом направлении. Если бы эти сосуды появлялись сразу, они бы очень сильно мешали формированию всех окружающих тканей. Как и у трахеид, утолщения стенок сосудов можно разделить по следующим группам (в зависимости от их формы):

  • Кольцевидные.
  • Спиралевидные.
  • Лестничной формы.
  • Сетчатые.
  • Пористые.

Обращаем ваше внимание на то, что длинные и полые трубки ксилемы, обладающие достаточной механической прочностью – идеальная система для доставки воды и растворов минеральных солей на большие расстояния. Движение жидкости по их полостям ничем не затрудняется, потерь воды и питательных веществ практически нет. Какие еще есть особенности строения проводящей ткани растений? Биология (6 класс среднего образовательного учреждения) рассматривает также взаимную проводимость стенок ксилем. Поясним.

Будучи схожими в этом отношении с трахеидами, ксилемы допускают перетекание воды посредством пор в стенках. Так как в них много лигнина, они обладают высокой механической прочностью, а потому не деформируются, кроме того, практически полностью отсутствует риск разрыва под давлением питательной жидкости. Впрочем, мы уже говорили о высочайшей важности этой отличительной черты ксилем, благодаря которой древесина многих видов деревьев отличается высокой прочностью и упругостью.

Именно крепким и одновременно упругим ксилемам обязаны своей прочностью древние корабли. Незаметная, но прочная проводящая ткань растений обеспечивала высокую стойкость длинных сосновых мачт, которые крайне редко ломались даже в самые жестокие штормы.

Проводящие структуры флоэмы

Рассмотрим проводящие материи, которые имеются в тканях флоэмы.

Во-первых, ситовидные структуры. Материалом их возникновения служит прокамбий, локализованный в первичной флоэме. Отметим, что при росте окружающих ее тканей протофлоэма быстро растягивается, после чего часть ее структур отмирает и полностью перестает функционировать. Метафлоэма заканчивает свое созревание после (!) того, как рост растения прекращается.

Прочие особенности

Так какие еще следует знать особенности строения проводящей ткани растений? 7 класс общеобразовательной школы должен изучать, помимо всего вышеописанного, еще и характеристики ситовидных структур, а также их клеток-спутниц. Давайте распишем этот вопрос чуть более подробно.

Особенно характерное строение имеют членики ситовидных структур. Во-первых, у них чрезвычайно тонкие клеточные стенки, в состав которых входит довольно много целлюлозы и пектина. Этим они сильно напоминают клетки паренхимы. Важно! В отличие от последних, при созревании у этих клеток полностью отмирает ядро, а цитоплазма «усыхает», распределяясь тонким слоем по внутренней стороне клеточной оболочки. Как ни странно, но они остаются живыми, но при этом зависящими от клеток-спутниц (напоминает отношения нейронов и астроцитов в мозгу животных).

Конечно, эти особенности строения проводящей ткани растений 6 класс обычно не рассматривает, но знать их полезно. Хотя бы для того, чтобы представлять себе сущность процессов, протекающих в растительном организме.

Ситовидные трубки и клетки-спутницы

Итак. Членики ситовидной структуры образуют одно целое, будучи тесно связаны между собой. Клетка-спутница уникальна своей цитоплазмой: она у нее крайне густая, содержит огромное количество митохондрий и рибосом. Вы могли догадаться, что они обеспечивают питание не только самой «спутницы», но и ситовидного членика. Если клетка-спутник по какой-то причине погибает, гибнет и вся структура, которая с ней связана.

Сами ситовидные трубки легко отличить по имеющимся в их составе ситовидным пластинкам. Даже при использовании слабого светового микроскопа их легко можно заметить. Возникает она в том месте, где образовалось сочленение торцевых концов двух члеников. Логично, что эти пластинки находятся точно по ходу роста этих самых члеников.

Типы проводящих пучков

Есть ли еще какие-то особенности строения проводящей ткани растений? Биология считает таковыми некоторые аспекты строения проводящих пучков, о которых мы вкратце расскажем.

Читать еще:  Растение руккола особенности ухода

В любом высшем растении можно встретить упомянутые структуры. Они представляют собой специфического вида тяжи, располагающиеся в корнях, молодых побегах и прочих частях, которые постоянно растут. В состав этих пучков входят сосуды и уже обсуждаемые нами ранее механические поддерживающие элементы. Каждая такая структурная единица состоит из двух частей:

  • Древесинный отдел. Состоит из сосудов и одеревенелых волокон.
  • Лубяной участок. В его состав входят ситовидные структуры и лубяные волокна.

Очень часто вокруг пучков образуется защитный слой, который состоит из живых или отмерших паренхимных клеток. Кроме того, по своему строению они делятся на два вида:

  • Полные — содержат ксилему и флоэму.
  • Неполные — в их структуру входит только одна из этих тканей.

Классификация проводящих пучков по Лотовой

В настоящее время достаточно распространенной является стандартная классификация Лотовой, которая подразделяет проводящие пучки на следующие разновидности:

  • Закрытые, коллатерального типа.
  • Закрытые, биколлатеральной разновидности.
  • Концентрического типа — ксилема располагается снаружи.
  • Разновидность предыдущего вида, в которой ксилема – внутри.
  • Радиальные пучки.

В общем-то, это практически все сведения, которые следует знать при изучении проводящих тканей растения в рамках школьной программы.

Где находится проводящая ткань у растений

Первоначально ксилема образуется из первичной меристемы — прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.

Для корня характерен экзархный тип закладки ксилемы, для стеблей — эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

У некоторых растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий). Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм , приспособленных к сезонным изменениям климата, — периодически. В результате этого образуются хорошо выраженные годовые кольца прироста.

Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку. Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено. У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки (рис.33). Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. Поэтому после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой (метаксилемой). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое (рис.34). Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются , а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд (рис.35). Большинство покрытосеменных растений и некоторых папоротникообразных обладают сосудами.

Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам. Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.

Чаще всего встречаются окаймлённые поры (рис.35-1). У них канал, обращённый в полость клетки, образует расширение — камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение — торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.

Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, поэтому такую пористость называют лестничной). Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.

С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений. Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними (рис.36). Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.

В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у которых они имеются наряду с трахеидами. Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.

Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа (лат. liber — луб, forma — форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки. Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.

В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины. Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей — это тяжевая паренхима. В другом случае паренхима образует горизонтальные лучи. Они называются сердцевинными лучами, так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.

Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками. Основные клетки проводящие, называются ситовидными элементами (рис.37). Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт. По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений. А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.

Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.

У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных он представлены ситовидными клетками. Ситовидные поля в клетках рассеяны по боковым стенкам. В протопласте сохраняется несколько деструктированное ядро.

У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки. В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница, образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки (рис.38). Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.

Структура зрелых ситовидных клеток имеет некоторые особенности. Отсутствует вакуоль, поэтому цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.

Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которых откладывается полисахарид каллоза. Поры располагаются группами, образуя ситовидные поля. У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку (рис.39). Если на ней находится одно ситовидное поле, её называют простой, если несколько — сложной.

Скорость передвижения растворов по ситовидным элементам составляет до 150см ? час. Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.

Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они имеются, то ситовидные элементы работают в течение всей жизни растения.

Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

Проводящие ткани растений

Рис.Клеточное строение однолетнего стебля липы. Продольный и поперечный срезы: 1 — система покровных тканей (снаружи внутрь; один слой эпидермиса, пробка, первичная кора); 2-5 — луб: 2 — лубяные волокна, 3 — ситовидные трубки, 4 — клетки-спутники, 5 — клетки лубяной паренхимы; 6 — клетки камбия, в крайних слоях растянутые, дифференцирующиеся; 7-9 клеточные элементы древесины: 7— клетки сосудов, 8— древесные волокна, 9 — клетки древесной паренхимы (7, 8 и 9 показаны также крупно); 10— клетки сердцевины.

Вода и минеральные вещества, поступающие через корень, должны достигать всех частей растения, в то же время вещества, образующиеся в листьях в процессе фотосинтеза, также предназначены для всех клеток. Таким образом, в теле растения должна существовать специальная система, обеспечивающая транспорт и перераспределение всех веществ. Эту функцию у растений выполняют проводящие ткани. Существует два типа проводящих тканей: ксилема (древесина) и флоэма (луб). По ксилеме осуществляется восходящий ток: передвижение воды с минеральными солями из корня во все органы растения. По флоэме идет нисходящий ток: транспорт органических веществ, поступающих из листьев. Проводящие ткани являются сложными тканями, так как состоят из нескольких типов по-разному дифференцированных клеток.

Читать еще:  Какие растения неприхотливые высадить в сад

Ксилема (древесина).Ксилема состоит из проводящих элементов: сосудов, или трахей, и трахеид, а также из клеток, выполняющих механическую и запасающую функцию.

Трахеиды. Это мертвые вытянутые клетки с косо срезанными заостренными концами (рис.12).

Их одревесневшие стенки сильно утолщены. Обычно длина трахеид составляет 1—4 мм. Располагаясь в цепочку друг за другом, трахеиды образуют водопроводящую систему у папоротникообразных и голосеменных растений. Связь между соседними трахеидами осуществляется через поры. Путем фильтрации сквозь мембрану поры осуществляется и верти­кальный, и горизонтальный транспорт воды с растворенными минеральными веществами. Движение воды по трахеидам идет с медленной скоростью.

Сосуды (трахеи). Сосуды образуют наиболее совершенную проводящую систему, характерную для покрытосеменных растений. Они представляют собой длинную полую трубку, состоящую из цепочки мертвых клеток — члеников сосуда, в поперечных стенках которых находятся крупные отверстия — перфорации. Благодаря этим отверстиям осуществляется быстрый ток воды. Сосуды редко бывают одиночными, обычно они располагаются группами. Диаметр сосуда — 0,1 — 0,2 мм. На ранней стадии развития из прокамбия ксилемы на внутренних стенках сосудов образуются целлюлозные, впоследствии одревесневающие, утолщения. Эти утолщения препятствуют сминанию сосудов под давлением соседних растущих клеток. Сначала образуются кольчатые и спиральные утолщения, которые не препятствуют дальнейшему удлинению клеток. Позже возникают более широкие сосуды с лестничными утолщениями, а затем пористые сосуды, для которых характерна наибольшая площадь утолщения (рис.13).

Через неутолщенные участки сосудов (поры) осуществляется горизонтальный транспорт воды в соседние сосуды и клетки паренхимы. Появление сосудов в процессе эволюции обеспечило покрытосеменным растениям высокую приспособленность к жизни на суше и, как результат, их господство в современном растительном покрове Земли.

Другие элементы ксилемы. В состав ксилемы кроме проводящих элементов входят также древесинная паренхима и механические элементы — древесинные волокна, или либриформ. Волокна, так же как и сосуды, возникли в процессе эволюции из трахеид. Однако в отличие от сосудов у волокон уменьшилось число пор и сформировалась еще более утолщенная вторичная оболочка.

Флоэма (луб).Флоэма осуществляет нисходящий ток органических веществ — продуктов фотосинтеза. В состав флоэмы входят ситовидные трубки, клетки-спутницы, механические (лубяные) волокна и лубяная паренхима.

Ситовидные трубки. В отличие от проводящих элементов ксилемы, ситовидные трубки представляют собой цепочку живых клеток (рис.14).

Поперечные стенки двух смежных клеток, входящих в состав ситовидной трубки, пронизаны большим числом сквозных отверстий, образующих структуру, напоминающую сито. С этим и связано название ситовидных трубок. Стенки, несущие эти отверстия, называют ситовидными пластинками. Через эти отверстия и осуществляется транспорт органических веществ из одного членика в другой.

Членики ситовидной трубки соединены своеобразными порами с клетками-спутницами (см. ниже). С паренхимными клетками трубки сообщаются через простые поры. В зрелых ситовидных клетках отсутствуют ядро, рибосомы и комплекс Гольджи, а их функциональная активность и жизнедеятельность поддерживается клетками-спутницами.

Клетки-спутницы (сопровождающие клетки). Располагаются вдоль продольных стенок членика ситовидной трубки. Клетки-спутницы и членики ситовидных трубок образуются из общих материнских клеток. Материнская клетка делится продольной перегородкой, и из двух образовавшихся клеток одна превращается в членик ситовидной трубки, а из другой развиваются одна или несколько клеток-спутниц. Клетки-спутницы имеют ядро, цитоплазму с многочисленными митохондриями, в них происходит активный обмен веществ, что связано с их функцией: обеспечивать жизнедеятельность безъядерных ситовидных клеток.

Другие элементы флоэмы. В состав флоэмы наряду с проводящими элементами входят механические лубяные (флоэмные) волокна и лубяная (флоэмная) паренхима.

Проводящие пучки.В растении проводящие ткани (ксилема и флоэма) образуют особые структуры — проводящие пучки. Если пучки частично или полностью окружены тяжами механической ткани, их называют сосудисто-волокнистыми пучками. Эти пучки пронизывают все тело растения, образуя единую проводящую систему.

Первоначально проводящие ткани образуются из клеток первичной меристемы — прокамбия. Если при образовании пучка прокамбий полностью расходуется на формирование первичных проводящих тканей, то такой пучок называют закрытым (рис.15).

Он не способен к дальнейшему (вторичному) утолщению, потому что в нем нет камбиальных клеток. Такие пучки характерны для однодольных растений.

У двудольных и голосеменных растений между первичными ксилемой и флоэмой остается часть прокамбия, которая в дальнейшем становится пучковым камбием. Его клетки способны делиться, образуя новые проводящие и механические элементы, что обеспечивает вторичное утолщение пучка и, как следствие, рост стебля в толщину. Проводящий пучок, содержащий камбий, называют открытым (см. рис.15).

В зависимости от взаимного расположения ксилемы и флоэмы различают несколько типов проводящих пучков (рис.16)

Коллатеральные пучки. Ксилема и флоэма примыкают друг к другу бок о бок. Такие пучки характерны для стеблей и листьев большинства современных семенных растений. Обыч­но в таких пучках ксилема занимает положение ближе к центру осевого органа, а флоэма обращена к периферии.

Биколлатералъные пучки. К ксилеме примыкают бок о бок два тяжа флоэмы: один — с внутренней стороны, другой — с периферии. Периферический тяж флоэмы преимущественно состоит из вторичной флоэмы, внутренний — из первичной, так как развивается из прокамбия.

Концентрические пучки. Одна проводящая ткань окружает другую проводящую ткань: ксилема — флоэму или флоэма — ксилему.

Радиальные пучки. Характерны для корней растений. Ксилема располагается по радиусам органа, между которыми находятся тяжи флоэмы.

Особенности строения проводящей ткани растений. Проводящая ткань растений: строение

Как и в организме животных, у растений есть отдельные транспортные механизмы, которые отвечают за доставку питательных веществ к отдельным клеткам и тканям. Сегодня мы обсудим особенности строения проводящей ткани растений.

Что это такое?

Проводящими тканями называются те, по которым происходит движение растворов питательных веществ, необходимых для роста и развития растительного организма. Причиной их возникновения является выход первых растений на сушу. От корня к листьям, как несложно догадаться, движется восходящий поток растворов солей и прочих питательных веществ. Соответственно, нисходящий ток идет в обратном направлении.

Восходящий транспорт осуществляется посредством сосудов в древесной ткани (ксилемы), нисходящая же доставка – при помощи ситовидных структур в лубе коры (флоэмы). В общем-то, форма ксилем напоминает таковую у сосудов животных. Клетки их вытянутые, имеют выраженную продолговатую форму. Какие еще имеются особенности строения проводящей ткани растений?

Какими они бывают?

Следует знать, что бывают первичные и вторичные ткани этого типа. Давайте приведем стандартную их классификацию, так как наглядность материала улучшает его усвоение. Итак, вот простейшее строение проводящей ткани растений, представленное в виде таблицы.

Все клетки в этой группе тканей практически одинаковы как по своей форме, так и по структуре

Клетки имеют общее происхождение, но существенно различаются по своей структуре и выполняемым ими функциям

Как вы уже могли понять, ксилема и флоэма относятся к сложной разновидности, так как за счет своей разнородной структуры они способны выполнять столь широкий перечень функций.

Ткани запасающего типа

Трахеиды, стандартные сосуды

Паренхима древесного волокна

Трубки «сита», клетки-спутницы

Лубяные клетки и волокнистые структуры

Паренхима лубяного типа

Как видите, строение проводящей ткани растений какой-то сверхъестественной сложностью не отличается. Во всяком случае, оно намного проще, нежели у клеток высших млекопитающих.

Ксилема. Проводящие элементы

Самыми древними элементами всей проводящей системы являются трахеиды. Так называются клетки специфической формы, имеющие характерные, заостренные концы. Именно от них впоследствии произошли обычные волокна древесной ткани. Они имеют одеревеневшую стенку значительной толщины. Форма трахеид может быть самой различной:

  • Кольцевидной.
  • Спиралевидной.
  • В форме точек.
  • Споровидной.

Следует помнить, что попутно растворы питательных веществ фильтруются сквозь множественные поры, а потому скорость передвижения их достаточно низкая. Эти важные особенности строения проводящей ткани растений зачастую забываются.

У каких растений может встречаться этот структурный элемент?

Трахеиды можно найти практически у всех высших спорофитов. Низшие голосеменные в большинстве своем также имеют в своем строении данные структурные элементы, причем даже у них они играют весьма важную роль. Дело в том, что прочные стенки трахеид, о которых мы уже писали выше, позволяют им выполнять не только непосредственно проводящую функцию, но и быть поддерживающей, механической структурой. Это – важнейшие особенности строения проводящей ткани растений, от которых зависит очень многое.

Зачастую только они являются единственной поддерживающей структурой, которая придает телу растения необходимую прочность. Любопытно, но у всех (!) хвойных растений в древесине полностью отсутствуют какие-то специальные механические ткани, а прочность обеспечивается исключительно за счет обсуждаемых нами трахеид. Длина этих удивительных проводящих элементов может колебаться в пределах от нескольких миллиметров до пары сантиметров.

В общем-то, изучает эти особенности строения проводящей ткани растений 5 класс любой общеобразовательной школы, но зачастую вопрос о самых длинных сосудах у растений ставит в тупик даже студентов биологических факультетов.

Характеристика сосудов

Они представляют собой весьма характерный элемент в ксилеме покрытосеменных растений. На вид похожи на длинные и пустотелые трубки. Каждая из них образуется в результате слияния удлиненных клеток по схеме «стык в стык». Члеником сосуда называется каждая клетка, которая по своему функциональному строению повторяет таковое для трахеиды. Отметим, впрочем, что членики намного шире и короче их.

Какая категория учащихся должна знать эти особенности строения проводящей ткани растений? 5 класс, который начал проходить ботанику и строение растительного организма, уже может ориентироваться в самых простых вопросах данной тематики.

Процесс образования сосудов

Та ксилема, которая первой появляется в процессе развития растения, называется первичной. Ее закладка происходит в корнях и верхушках молодых побегов. В этом случае разделенные членики сосудов ксилемы нарастают на дистальных концах прокамбиальных тяжей. Сам сосуд появляется после их слияния, вследствие разрушения внутренних перегородок. Убедиться в этом можно, если посмотреть на их срез в микроскоп: внутри сохраняются ободки, которые как раз таки и являются остатками разрушенной перегородки.

Давайте вспомним, благодаря каким структурным элементам образуется проводящая ткань растений, и какие из них находятся в корне растения:

  • Эпидермальная оболочка.
  • Кора.
  • Протодерма, которая постоянно обновляет лежащие выше слои.
  • Верхушечная меристема, которая является основной зоной роста корня растения.
  • От повреждения более нежные ткани защищает корневой колпачок.
  • Внутри корня располагаются знакомые нам ткани: ксилема и флоэма.
  • Образуются они, соответственно, из протофлоэмы и протоксилемы.
  • Эндодермис.
Читать еще:  Способы нанесение декоративной штукатурки на стены

Протоксилема (то есть первые образующиеся в растении сосуды) появляется на самой верхушке всех молодых осевых органов. Образование происходит непосредственно под слоем меристемы, то есть там, где окружающие сосуды клетки продолжают интенсивно расти и вытягиваться. Нужно отметить, что даже зрелые сосуды протоксилемы ничуть не теряют своей способности к растягиванию, так как их стенки еще не подверглись одеревенению.

Как правило, проводящие ткани цветковых растений такому уплотнению подвергаются достаточно рано, так как стеблю требуется поддерживать достаточно массивный и уязвимый цветок.

Вспомним, что отвечает за процесс затвердевания? Лигнин. А он как раз-таки откладывается в стенках «заготовок» сосудов или по спирали, или в кольцевидном направлении. Такое положение его слоев не мешает сосуду растягиваться. В то же время этот лигнин обеспечивает вполне приличную прочность молодых сосудов в растении, что предотвращает их разрушение при механических воздействиях.

Вот почему так важна проводящая ткань растений. Рисунок, который имеется на страницах этой статьи, наверняка поможет вам лучше разобраться в этом вопросе, так как наглядно демонстрирует основные составные части упомянутой ткани.

Образование метаксилемы

В процессе роста появляются новые сосуды, которые значительно раньше подвергаются процессу одеревенения. Когда заканчивается их формирование в зрелых частях растения, завершается процесс роста метаксилемы. Как же должен рассматривать школьный курс биологии строение проводящей ткани растений? 5 класс, как правило, ограничивается только лишь тем фактом, что в растительной ткани существуют сосуды. Дальнейшее изучение входит в программу обучения более старших учеников.

В то же время первые сосуды, образовавшиеся из протоксилемы, сначала растягиваются, а потом разрушаются полностью. Зрелые же структурные образования, которые возникли из метаксилемы, к вытягиванию и росту не способны в принципе. Фактически, это мертвые, очень жесткие и полые трубки.

Несложно обдумать биологическую целесообразность протекания данного процесса именно в этом направлении. Если бы эти сосуды появлялись сразу, они бы очень сильно мешали формированию всех окружающих тканей. Как и у трахеид, утолщения стенок сосудов можно разделить по следующим группам (в зависимости от их формы):

  • Кольцевидные.
  • Спиралевидные.
  • Лестничной формы.
  • Сетчатые.
  • Пористые.

Обращаем ваше внимание на то, что длинные и полые трубки ксилемы, обладающие достаточной механической прочностью – идеальная система для доставки воды и растворов минеральных солей на большие расстояния. Движение жидкости по их полостям ничем не затрудняется, потерь воды и питательных веществ практически нет. Какие еще есть особенности строения проводящей ткани растений? Биология (6 класс среднего образовательного учреждения) рассматривает также взаимную проводимость стенок ксилем. Поясним.

Будучи схожими в этом отношении с трахеидами, ксилемы допускают перетекание воды посредством пор в стенках. Так как в них много лигнина, они обладают высокой механической прочностью, а потому не деформируются, кроме того, практически полностью отсутствует риск разрыва под давлением питательной жидкости. Впрочем, мы уже говорили о высочайшей важности этой отличительной черты ксилем, благодаря которой древесина многих видов деревьев отличается высокой прочностью и упругостью.

Именно крепким и одновременно упругим ксилемам обязаны своей прочностью древние корабли. Незаметная, но прочная проводящая ткань растений обеспечивала высокую стойкость длинных сосновых мачт, которые крайне редко ломались даже в самые жестокие штормы.

Проводящие структуры флоэмы

Рассмотрим проводящие материи, которые имеются в тканях флоэмы.

Во-первых, ситовидные структуры. Материалом их возникновения служит прокамбий, локализованный в первичной флоэме. Отметим, что при росте окружающих ее тканей протофлоэма быстро растягивается, после чего часть ее структур отмирает и полностью перестает функционировать. Метафлоэма заканчивает свое созревание после (!) того, как рост растения прекращается.

Прочие особенности

Так какие еще следует знать особенности строения проводящей ткани растений? 7 класс общеобразовательной школы должен изучать, помимо всего вышеописанного, еще и характеристики ситовидных структур, а также их клеток-спутниц. Давайте распишем этот вопрос чуть более подробно.

Особенно характерное строение имеют членики ситовидных структур. Во-первых, у них чрезвычайно тонкие клеточные стенки, в состав которых входит довольно много целлюлозы и пектина. Этим они сильно напоминают клетки паренхимы. Важно! В отличие от последних, при созревании у этих клеток полностью отмирает ядро, а цитоплазма «усыхает», распределяясь тонким слоем по внутренней стороне клеточной оболочки. Как ни странно, но они остаются живыми, но при этом зависящими от клеток-спутниц (напоминает отношения нейронов и астроцитов в мозгу животных).

Конечно, эти особенности строения проводящей ткани растений 6 класс обычно не рассматривает, но знать их полезно. Хотя бы для того, чтобы представлять себе сущность процессов, протекающих в растительном организме.

Ситовидные трубки и клетки-спутницы

Итак. Членики ситовидной структуры образуют одно целое, будучи тесно связаны между собой. Клетка-спутница уникальна своей цитоплазмой: она у нее крайне густая, содержит огромное количество митохондрий и рибосом. Вы могли догадаться, что они обеспечивают питание не только самой «спутницы», но и ситовидного членика. Если клетка-спутник по какой-то причине погибает, гибнет и вся структура, которая с ней связана.

Сами ситовидные трубки легко отличить по имеющимся в их составе ситовидным пластинкам. Даже при использовании слабого светового микроскопа их легко можно заметить. Возникает она в том месте, где образовалось сочленение торцевых концов двух члеников. Логично, что эти пластинки находятся точно по ходу роста этих самых члеников.

Типы проводящих пучков

Есть ли еще какие-то особенности строения проводящей ткани растений? Биология считает таковыми некоторые аспекты строения проводящих пучков, о которых мы вкратце расскажем.

В любом высшем растении можно встретить упомянутые структуры. Они представляют собой специфического вида тяжи, располагающиеся в корнях, молодых побегах и прочих частях, которые постоянно растут. В состав этих пучков входят сосуды и уже обсуждаемые нами ранее механические поддерживающие элементы. Каждая такая структурная единица состоит из двух частей:

  • Древесинный отдел. Состоит из сосудов и одеревенелых волокон.
  • Лубяной участок. В его состав входят ситовидные структуры и лубяные волокна.

Очень часто вокруг пучков образуется защитный слой, который состоит из живых или отмерших паренхимных клеток. Кроме того, по своему строению они делятся на два вида:

  • Полные — содержат ксилему и флоэму.
  • Неполные — в их структуру входит только одна из этих тканей.

Классификация проводящих пучков по Лотовой

В настоящее время достаточно распространенной является стандартная классификация Лотовой, которая подразделяет проводящие пучки на следующие разновидности:

  • Закрытые, коллатерального типа.
  • Закрытые, биколлатеральной разновидности.
  • Концентрического типа — ксилема располагается снаружи.
  • Разновидность предыдущего вида, в которой ксилема – внутри.
  • Радиальные пучки.

В общем-то, это практически все сведения, которые следует знать при изучении проводящих тканей растения в рамках школьной программы.

Основные ткани, структура, местонахождение в органах растений и функции.

Тканями называют комплексы клеток, обладающих сходным строением, имеющих единое происхождение и выполняющих одинаковые функции. По этим критериям ткани делят на несколько групп: меристематические или образовательные, покровные, основные, механические, проводящие, выделительные.

Образовательная ткань (меристема) дают начало всем постоянным тканям, обеспечивают рост органов. По происхождению они могут быть Первичными или вторичными , возникающими позже. По топографии ( расположению в теле растений ) – верхушечными, боковыми, вставочными.

Апикальные (верхушечные) меристемы возникают в зародыше семени, сохраняются в Апексах — на кончике корня и на верхушке побега, обеспечивают рост органов в длину.

Латеральные (боковые) меристемы располагаются вдоль тела растений, формируют в основном проводящую систему и вызывают рост органов в ширину. К ним относят­ся: первичные — Прокамбий, перицикл и вторичные — Камбий, феллоген (пробковый камбий).

Прокамбий образует первичные проводящие ткани : луб ( флоэму ) и древесину ( ксилему). Пробковый камбий ( феллоген) формирует вторичную покровную ткань – перидерму

Интеркалярные (вставочные) меристемы Первичны. Это остатки апикальных меристем. Обеспечивают рост черешков, тычиночных нитей , междоузлий и т. д.

Травматические или раневые, меристемы Вторичны, возникают в местах повреждения. Деление меристем стимулируют фитогормоны. Клетки меристемы паренхимные, живые, с крупным ядром, большим количеством рибосом. Вакуоли отсутствуют или очень мелкие.

Покровные ткани находятся в контакте с внешней средой и обеспечивают защиту растений от неблагоприятных воздействий среды: механических повреждений, низких температур, чрезмерного испарения воды, проникновения микроорганизмов и др. Кроме того, покровные ткани осуществляют обмен веществ между организмом и внешней средой. Различают три вида покровных тканей: кожицу, или эпидерму, пробку и корку.

Эпидермасостоит из одного слоя плотно прилегающих друг к другу клеток. Ее поверхность покрыта воскоподобным веществом — кутином, образующим кутикулу. Эпидерма покрывает листья и молодые побеги растения. Одной из функций эпидермы являются газообмен и транспирация, т.е. испарение воды.

Пробка образуется на смену эпидерме и покрывает стебли и корни многолетних растений. Образование пробки связано с появлением вторичной меристемы — феллогена. Пробка предохраняет стволы и ветви от излишней потери воды, резких колебаний температуры и др.

Корка образуется в результате того, что феллоген организует слои пробки, которые могут препятствовать поступлению веществ и воды в клетки паренхимы. Феллоген также захватывает механические ткани и луб. В результате происходит отмирание участков тканей.

Механические ткани, Клетки могут располагаться тяжами вдоль осевых органов, сопровождать проводящие пучки и образовывать трехмерные структуры, создающие опору для других тканей. Наиболее важные механические ткани — лубяные и древесные волокна — хорошо развиты в стебле. В корне механическая ткань сосредоточена в центре органа. Волокна механической ткани сопровождают проводящие пучки.

Проводящие тканиобеспечивают транспорт веществ в теле растений. От корней в стебель и листья осуществляется перенос минеральных веществ, всасываемых из почв, — восходящий ток. Он обеспечивается ксилемой, или древесиной. Движение органических веществ, продуктов фотосинтеза к местам их использования или отложения в запас (к корням, плодам, семенам и другим органам) составляет нисходящий ток. Он осуществляется флоэмой, или лубом, располагающимся кнаружи от древесины. Основными элементами ксилемы являются трахеиды и трахеи (сосуды), окруженные древесными волокнами.
Трахеиды-вытянутые мертвые клетки

Основные ткани паренхимы составляют большую часть всех органов растений. Они заполняют промежутки между проводящими и механическими тканями и присутствуют во всех вегетативных и генеративных органах. Эти ткани образуются за счет дифференцировки апикальных меристем и состоят из живых паренхиматозных клеток, разнообразных по строению и функциям. Различают ассимиляционную, запасающую, воздухоносную и водоносную паренхимы. Клетки ассимиляционной паренхимы содержат хлоропласты и специализируются на фотосинтезе.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector