Основы теория ламинарного течения жидкости
Ламинарное и турбулентное течение вязкой жидкости (стр. 1 из 2)
Реферат выполнила Плетнёва Елена Алексеевна, группа Т 13
Московский государственный университет инженерной экологии
Вязкость. Коэффициент вязкости. Слоистое движение жидкости, возникающее при сильном влиянии трения. Воздействие статического давления на твердые тела, находящиеся в поле течения. Вязкий поток. Число Рейнольдса.
Вязкость. Коэффициент вязкости
В реальных жидкостях почти никогда нельзя пренебречь внутренним трением, вязкостью; большинство интересных вещей в поведении жидкости так или иначе связано с этим свойством. Циркуляция сухой воды (т.е. ее вязкость не учитывается) никогда не изменяется: если ее не было в начале, то она никогда не появится. В результате проведения экспериментов выясняется, что скорость жидкости на поверхности твердого тела не равна нулю. Можно заметить, что лопасти вентилятора собирают на себе тонкий слой пыли. Пыль не сдувается т.к. скорость воздуха относительно них, измеренная непосредственно на поверхности равна нулю. Теория должна учитывать, что во всех обычных жидкостях молекулы, находящиеся рядом с поверхностью имеют нулевую скорость (относительно самой поверхности).
Можно предположить, что если приложить к жидкости напряжение сдвига, то, сколь мало оно бы ни было, жидкость всё равно течет. В статическом случае никаких напряжений сдвига нет. Однако, когда равновесия еще нет, в момент, когда вы давите на жидкость, силы сдвига вполне могут быть. Вязкость как раз и описывает эти силы, возникающие в движущейся жидкости. Чтобы измерить силы сдвига в процессе движения жидкости, предположим, что имеются две плоские твердые пластины, между которыми находится вода. Причем одна из пластин неподвижна, тогда как другая движется параллельно ей с малой скоростью V . Если измерять силу, требуемую для поддержания движения верхней пластины, выяснится, что она пропорциональна площади пластины и отношению V /d, где d – расстояние между пластинами. Таким образом, напряжение сдвига F/A пропорционально V /d:
Коэффициент пропорциональности h называется коэффициентом вязкости.
Внутреннее трение в жидкости можно показать и с помощью другого опыта: налить в стеклянный сосуд глицерин, ярко окрасив его нижний слой, получаем горизонтальную поверхность; поместим в сосуд пластинку (рис. 1).
Во время движения пластинки все горизонтальные поверхности с обеих ее сторон искривляются. При этом частички жидкости испытывают вращение, справа – по часовой стрелке, слева – против. Такую область называют пограничным слоем. Самая внутренняя часть пограничного слоя прилипает к пластинке и движется с такой же скоростью u, как и сама пластинка. Следующие части слоя тоже приводятся в движение, но скорость их тем меньше. Чем дальше они от пластинки. В пограничном слое устанавливается градиент скорости ¶u/¶ x. Если движение сопровождается трением, то сила F требуется не только для достижения конечной скорости, но и для поддержания этой постоянной скорости. Трение в жидкости можно сравнить со сдвигом или срезом в твердых телах, однако существует и коренное различие: в твердых телах напряжение сдвига растет с увеличением деформации; внутреннее трение, напротив, пропорционально скорости деформации.
Часто удобнее бывает пользоваться удельной вязкостью, которая равна h , деленной на плотность r . При этом величины удельных вязкостей воды и воздуха сравнимы:
Вода при температуре 20 0 С h/r =10 -6 м/сек,
Воздух при температуре 20 0 С h/r =15· 10 -6 м/сек.
Обычно вязкость очень сильно зависит от температуры.
Слоистое движение жидкости, возникающее при сильном влиянии трения
Наблюдаемое нами движение называется “слоистым” или “ламинарным”. Толщина слоя жидкости при этом меньше, чем толщина D, создаваемого трением пограничного слоя. Примером ламинарного течения может служить — течение жидкости в узкой трубке длиной l. Поддержание этого течения требует силы
Здесь um означает среднюю величину скорости течения, численно равную
i=объем жидкости, протекающий через поперечное сечение f трубки/время течения t
Действительная скорость у поверхности трубки равна нулю, а в середине — наибольшая.
Течение жидкости в плоской, образованной двумя стеклянными пластинами кювете. Здесь возможно проследить пути отдельных частичек жидкости, которые образуют “нити тока”.
Введем в ламинарный поток препятствие в виде кружка, нити тока выглядят как на рисунке 2.
Когда скорость очень мала или вязкость очень велика, можно отбросить инерционные члены и описать поток уравнением
Это уравнение впервые было решено Стоксом. Он так же решил задачу для сферы. Когда маленькая сфера движется при малых числах Рейнольдса (понятие числа Рейнольдса введено на странице 5), то к ней приложена сила, равная 6ph аV, где а – радиус сферы, V – его скорость. В области малых чисел Рейнольдса линии вокруг цилиндра выглядят так же, как на рисунке 2.
Качественной характеристикой, описывающей поток реальной жидкости, является сила, увлекающая цилиндр. На рисунке 3 графически изображена зависимость коэффициента увлечения Сd , отношения силы к 1/2rV 2 Dl (D – диаметр, l – длина цилиндра, r — плотность жидкости).
Воздействие статического давления на твердые тела, находящиеся в поле течения
Рисунок рис.4 показывает обтекаемый плоский диск в трёх положениях. Первое оказывается неустойчивым: диск устанавливается поперек течения. Мы видим пример этому на каждом падающем листе бумаги. Объяснение: при любом ничтожном наклонении возникает несимметричность в распределении статического давления, вследствие чего развивается вращательный момент. Это очевидно, когда диск находится под большим наклоном к течению (рис.4,б): области сгущенных линий тока тянут, а области расходящихся линий тока давят против диска, т.е. в ту же сторону. В результате, диск поворачивается по часовой стрелке (рис.4,б).
В общем случае сжимаемой жидкости в напряжениях есть и другой член, который зависит от производных скорости. Общее выражение имеет вид
Если мы решили задачу для потока с одной скоростью V1 и некоторого цилиндра диаметром D1 а затем интересуемся обтеканием другого цилиндра диаметра D2 другой жидкостью, то поток будет одним и тем же при такой скорости V2 , которая отвечает тому же самому числу Рейнольдса, которое выражается зависимостью
Это соответствует действительности только в том условии, что сжимаемостью жидкости можно пренебречь. В противном случае модели будут соответствовать, если будут одинаковы одновременно число Рейнольдса и число Маха (число Маха — отношение V к скорости звука). Таким образом, для скоростей, близких к скорости звука и больших, поток в обоих случаях будет одинаков, если и число Маха и число Рейнольдса равны.
Если увеличивать скорость потока так, что число Рейнольдса станет несколько больше единицы, то увидим, что поток изменился. За сферой возникают вихри (см рис. 5). Обычно считают, что циркуляция нарастает постепенно. Когда ? =от 10 до 30 поток меняет свой характер.
Когда число Рейнольдса проходит значение в районе 40, характер движения претерпевает неожиданное и резкое изменение. Один из вихрей за цилиндром становится настолько длинным, что отрывается и плывет вниз по течению вместе с жидкостью. При этом жидкость за цилиндром снова закручивается и возникает новый вихрь. Вихри отслаиваются то с одной, то с другой стороны и в какой-то момент вытягиваются вихревым следом за цилиндром. Такой поток вихрей называется цепочкой Кармана. Она всегда появляется для чисел Рейнольдса ?>40.
Можно представить физическую причину этих вихрей. Известно, что на поверхности цилиндра скорость жидкости должна быть равной нулю, но при удалении от поверхности скорость быстро возрастает. Это местное изменение скорости жидкости и создаёт вихри. Если скорость достаточно мала, у вихрей есть время “расплыться” на большую область. Когда ?достигает нескольких тысяч, вихри начинают заполнять тонкую ленту. В таком слое поток хаотичен и нерегулярен. Эта область называется пограничным слоем . Этот поток пробивает себе дорогу дальше и дальше. В этой области, турбулентности, скорости очень нерегулярны и беспорядочны. С увеличением числа Рейнольдса до 10 5 , мы получаем турбулентный след.
Ламинарное и турбулентное течение жидкости: описание, особенности и интересные факты
Гидродинамика является важнейшим разделом физики, который изучает законы движения жидкости в зависимости от внешних условий. Важным вопросом, который рассматривается в гидродинамике, является вопрос определения ламинарного и турбулентного течения жидкости.
Что такое жидкость?
Чтобы лучше понять вопрос ламинарного и турбулентного течения жидкости, необходимо для начала рассмотреть, что собой представляет эта субстанция.
Жидкостью в физике называют одно из 3-х агрегатных состояний материи, которое при заданных условиях способно сохранять свой объем, но которая при воздействии минимальных тангенциальных сил изменяет свою форму и начинает течь. В отличие от твердого тела, в жидкости не возникают силы сопротивления внешнему воздействию, которые бы стремились вернуть ее исходную форму. От газов же жидкость отличается тем, что она способна сохранять свой объем при постоянном внешнем давлении и температуре.
Параметры, описывающие свойства жидкостей
Вопрос ламинарного и турбулентного течение определяется, с одной стороны, свойствами системы, в которой рассматривается движение жидкости, с другой же стороны, характеристиками текучей субстанции. Приведем основные свойства жидкостей:
- Плотность. Любая жидкость является однородной, поэтому для ее характеристики используют эту физическую величину, отражающую количество массы текучей субстанции, которая приходится на ее единицу объема.
- Вязкость. Эта величина характеризует трение, которое возникает между различными слоями жидкости в процессе ее течения. Так как в жидкостях потенциальная энергия молекул приблизительно равна их кинетической энергии, то она обуславливает наличие некоторой вязкости в любых реальных текучих субстанциях. Это свойство жидкостей является причиной потери энергии в процессе их течения.
- Сжимаемость. При увеличении внешнего давления всякая текучая субстанция уменьшает свой объем, однако, для жидкостей это давление должно быть достаточно велико, чтобы незначительно уменьшить занимаемый ими объем, поэтому для большинства практических случаев, это агрегатное состояние полагают несжимаемым.
- Поверхностное натяжение. Эта величина определяется работой, которую необходимо затратить, чтобы образовать единицу поверхности жидкости. Существование поверхностного натяжения обусловлено наличием сил межмолекулярного взаимодействия в жидкостях, и определяет их капиллярные свойства.
Ламинарное течение
Изучая вопрос турбулентного и ламинарного течения, рассмотрим сначала последнее. Если для жидкости, которая находится в трубе, создать разность давлений на концах этой трубы, то она начнет течь. Если течение субстанции является спокойным, и каждые ее слой перемещается вдоль плавной траектории, которая не пересекает линии движения других слоев, тогда говорят о ламинарном режиме течения. Во время него каждая молекула жидкости перемещается вдоль трубы по определенной траектории.
Особенностями ламинарного течения являются следующие:
- Перемешивания между отдельными слоями текучей субстанции не существует.
- Слои, находящиеся ближе к оси трубы, движутся с большей скоростью, чем те, которые расположены на ее периферии. Этот факт связан с наличием сил трения между молекулами жидкости и внутренней поверхностью трубы.
Примером ламинарного течения являются параллельные струи воды, которые вытекают из душа. Если в ламинарный поток добавить несколько капель красителя, то можно видеть, как они вытягиваются в струю, которая продолжает свое плавное течение, не перемешиваясь в объеме жидкости.
Турбулентное течение
Этот режим кардинальным образом отличается от ламинарного. Турбулентное течение представляет собой хаотический поток, в котором каждая молекула движется по произвольной траектории, которую можно предсказать лишь в начальный момент времени. Для этого режима характерны завихрения и кругообразные движения небольших объемов в потоке жидкости. Тем не менее, несмотря на хаотичность траекторий отдельных молекул, общий поток движется в определенном направлении, и эту скорость можно характеризовать некоторой средней величиной.
Примером турбулентного течения является поток воды в горной реке. Если капнуть краситель в такой поток, то можно видеть, что в первоначальный момент времени появится струя, которая начнет испытывать искажения и небольшие завихрения, а затем исчезнет, перемешавшись во всем объеме жидкости.
От чего зависит режим течения жидкости?
Ламинарный или турбулентный режимы течения зависят от соотношения двух величин: вязкости текучей субстанции, определяющей трение между слоями жидкости, и инерционных сил, которые описывают скорость потока. Чем более вязкая субстанция, и чем меньше скорость ее течения, тем выше вероятность появления ламинарного потока. Наоборот, если вязкость жидкости мала, а скорость ее передвижения велика, то поток будет турбулентным.
Ниже приводится видео, которое наглядно поясняет особенности рассматриваемых режимов течения субстанции.
Как определить режим течения?
Для практики этот вопрос очень важен, поскольку ответ на него связан с особенностями движения объектов в текучей среде и величиной энергетических потерь.
Переход между ламинарным и турбулентным режимами течения жидкости можно оценить, если использовать так называемые числа Рейнольдса. Они являются безразмерной величиной и названы в честь фамилии ирландского инженера и физика Осборна Рейнольдса, который в конце XIX века предложил их использовать для практического определения режима движения текучей субстанции.
Рассчитать число Рейнольдса (ламинарное и турбулентное течение жидкости в трубе), можно по следующей формуле: Re = ρ*D*v/μ, где ρ и μ — плотность и вязкость субстанции, соответственно, v — средняя скорость ее течения, D — диаметр трубы. В формуле числитель отражает инерционные силы или поток, а знаменатель определяет силы трения или вязкость. Отсюда можно сделать вывод, что, если число Рейнольдса для рассматриваемой системы имеет большую величину, значит, жидкость течет в турбулентном режиме, и наоборот, маленькие числа Рейнольдса говорят о существовании ламинарного потока.
Конкретные значения чисел Рейнольдса и их использование
Как было сказано выше, можно использовать для определения ламинарного и турбулентного течения число Рейнольдса. Проблема состоит в том, что оно зависит от особенностей системы, например, если труба будет иметь неровности на своей внутренней поверхности, то турбулентное течение воды в ней начнется при меньших скоростях потока, чем в гладкой.
Статистические данные многих экспериментов показали, что независимо от системы и природы текучей субстанции, если число Рейнольдса меньше 2000, то имеет место ламинарное движение, если же оно больше 4000, то поток становится турбулентным. Промежуточные значения чисел (от 2000 до 4000) говорят о наличии переходного режима.
Указанные числа Рейнольдса используются для определения движения различных технических объектов и аппаратов в текучих средах, для исследования течения воды по трубам разной формы, а также играют важную роль при изучении некоторых биологических процессов, например, движение микроорганизмов в кровяных сосудах человека.
ламинарное течение
ЛАМИНАРНОЕ ТЕЧЕНИЕ (от лат. lamina — пластинка) — упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re. Для каждого вида течения существует такое число RеКр, наз. нижним критич. числом Рейнольдса, что при любом Re Rекр, принимая особые меры для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение .Теоретически Л. т. изучаются с помощью Навье — Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.
Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения RеКр2200, где Re=
(
— средняя по расходу скорость жидкости, d — диаметр трубы,
— кинематич. коэф. вязкости,
— динамич. коэф. вязкости,
— плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды (
=10 -6 м 2 /с при 20° С) устойчивое Л. т. с
=1 м/с возможно лишь в трубках диаметром не более 2,2 мм.
При Л. т. в неограниченно длинной трубе скорость в любом сечении трубы изменяется по закону —
(1 — —r 2 /а 2 ), где а — радиус трубы, r — расстояние от оси,
— осевая (численно максимальная) скорость течения; соответствующий параболич. профиль скоростей показан на рис. а. Напряжение трения изменяется вдоль радиуса по линейному закону
где
=
— напряжение трения на стенке трубы. Для преодоления сил вязкого трения в трубе при равномерном движении должен иметь место продольный перепад давления, выражаемый обычно равенством P1-P2
где p1 и р2 — давления в к—н. двух поперечных сечениях, находящихся на расстоянии l друг от друга,
— коэф. сопротивления, зависящий от
для Л. т.
. Секундный расход жидкости в трубе при Л. т. определяет Пуазейля закон. В трубах конечной длины описанное Л. т. устанавливается не сразу и в начале трубы имеется т. н. входной участок, на к-ром профиль скоростей постепенно преобразуется в параболический. Приближённо длина входного участка
Распределение скоростей по сечению трубы: а — при ламинарном течении; б — при турбулентном течении.
Когда при течение становится турбулентным, существенно изменяются структура потока, профиль скоростей (рис., 6)и закон сопротивления, т. е. зависимость
от Re (см. Гидродинамическое сопротивление).
Кроме труб Л. т. имеет место в слое смазки в подшипниках, вблизи поверхности тел, обтекаемых маловязкой жидкостью (см. Пограничный слой ),при медленном обтекании тел малых размеров очень вязкой жидкостью (см., в частности, Стокса формула). Теория Л. т. применяется также в вискозиметрии, при изучении теплообмена в движущейся вязкой жидкости, при изучении движения капель и пузырьков в жидкой среде, при рассмотрении течений в тонких плёнках жидкости и при решении ряда др. задач физики и физ. химии.
Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Тар г С. М., Основные задачи теории ламинарных течений, М.- Л., 1951; Слезкин Н. А., Динамика вязкой несжимаемой жидкости, М., 1955, гл. 4 — 11. С. М. Тарг.
Основы теория ламинарного течения жидкости
Определение законов сопротивления и значения
Критического числа Рейнольдса при ламинарном
И турбулентном режимах течения жидкости
Цель работы и содержание работы
Исследовать режимы течения жидкости в трубопроводах, определить критическое число Рейнольдса и характеристики сопротивления движению жидкости по трубопроводу.
2.2 Краткие теоретические сведения
Виды режимов течения
В реальном потоке жидкости, как показывают многочисленные опыты, возможны разные течения жидкости.
1. Ламинарное (слоистое) течение, в котором частицы жидкости двигаются в своих слоях не перемешиваясь. При этом сами частицы внутри слоя имеет вращательное движение (рисунок 2.1) за счет градиента скоростей .
При увеличении скорости течения жидкости – скорость V увеличивается, градиент скорости , соответственно. Увеличивается вращательное движение частиц, при этом скорость более удаленного от стенки слоя еще более увеличивается (рисунок 2.2), a скорость пристеночных слоев еще более уменьшается.
Соответственно в пристеночных слоях увеличивается гидромеханическое давление (по уравнению Бернулли). Под действием разности давления вращающаяся частица перемешается в толщу ядра (рисунок 2.3), образуя второй режим течения жидкости – турбулентное течение.
2. Турбулентное течение жидкости сопровождается интенсивным перемешиванием жидкости и пульсацией скоростей и давлений (рисунок 2.4).
Немецкий ученый О. Рейнольдс в 1883 г. доказал, что переход от ламинарного течения жидкости к турбулентному зависит от вязкости жидкости, ее скорости и характерного размера (диаметра) трубы.
Критическая скорость, при которой ламинарное течение переходит в турбулентное, равна:
,
где K – универсальный коэффициент пропорциональности (он одинаков для всех жидкостей и диаметров труб); d – диаметр трубопровода.
Этот безразмерный коэффициент был назван критическим числом Рейнольдса:
. (2.1)
Как показывают опыты, для жидкостей . Очевидно, число Re может служить критерием, позволяющих судить о режиме течения жидкости в трубах, так
при течение ламинарное,
при течение турбулентное.
На практике ламинарное течение наблюдается при течении вязких жидкостей (в гидро- и маслосистемах самолета). Турбулентное течение наблюдается в водопроводе, в топливных (керосин, бензин, спирт) системах.
В гидравлических системах наблюдается еще один вид течения жидкости – кавитационный режим течения. Это движение жидкости, связанное с изменением ее агрегатного состояния (превращение в газ, выделение растворенного воздуха и газов). Это явление наблюдается тогда, когда местное статическое давление снижается до давления упругости насыщенных паров жидкости, то есть при (рисунок 2.5)
В этом случае в данной месте потока начинается интенсивное парообразование и выделение воздуха и газов. В потоке образуются газовые полости («кавитас» – полость). Такое течение жидкости называется кавитационным. Кавитация – явление опасное, ибо, во-первых, ведет к резкому уменьшению расхода жидкости (а следовательно, и к возможному выключению двигателя при кавитации в топливной системе), и, во-вторых, пузырьки газа, воздействуя на лопатки насосов, разрушают их.
В топливных системах борются с кавитацией путем повышения давления в баках или системе с помощью подкачивающих насосов и системы наддува баков. Это явление необходимо учитывать при проектировании и конструировании гидросистем летательных аппаратов (особенно топливной). Дело в том, что по ряду причин эти системы соединены с атмосферой (система суфлирования). С подъемом на высоту давление над поверхностью емкостей систем уменьшается, следовательно, уменьшается статическое давление в трубопроводах. В сочетании с потерями давления на местных сопротивлениях и уменьшением статического давления при больших скоростях течения в трубопроводах возникает опасность появления кавитационных давлений.
Основы теория ламинарного течения жидкости
Ламинарное течение является строго упорядоченным слоистым течением и подчиняется закону трения Ньютона:
(2.2)
Рассмотрим установившееся ламинарное течение жидкости в круглой прямой трубе (рисунок 2.6), расположенной горизонтально ( ). Поскольку труба цилиндрическая, то
и в этом случае уравнение Бернулли примет вид:
, (2.3)
. (2.4)
Выделим в жидкости (рисунок 2.6) объем жидкости радиусом r и длиной l. Очевидно, постоянство скорости будет обеспечено, если сумма сил давления и трения, действующая на выделенный объем, будет равна нулю, то есть
,
. (2.5)
Касательные напряжения в поперечном сечении трубы изменяются по линейному закону пропорционально радиусу (рисунок 2.6).
Приравнивая (2.4) и (2.5), получим:
,
или, интегрируя от r = 0 до r = r, получаем закон распределения скоростей по сечению круглой трубы:
. (2.6)
Расход жидкости определяется как dQ = VdS. Подставляя в последнее выражение (2.6) и учитывая, что dS = 2prdr, после интегрирования получаем:
. (2.7)
Следовательно, расход жидкости при ламинарном течении пропорционален радиусу трубы в четвертой степени.
. (2.8)
Сравнивая (2.6) и (2.8), получаем, что
. (2.9)
Для определения потерь напора на трение – , определим
из (2.7):
. (2.10)
(2.11)
или, заменяя m через nr и g через qr, получим
(2.12)
Таким образом, при ламинарном течении в круглой трубе потери налога за трение пропорциональны расходу жидкости и вязкости, и обратно пропорциональны диаметру трубы в четвертой степени. Чем меньше диаметр трубы, тем больше потери напора на трение.
Ранее мы условилась, что потери на гидросопротивления всегда пропорциональны квадрату скорости жидкости. Для получения такой зависимости соответственно преобразуем выражение (2.12), учитывая, что
, а
.
После соответствующих преобразований получим:
, (2.13)
, (2.14)
(2.15)
– коэффициент сопротивления трения при ламинарном течении.
Осталось определять коэффициент , учитывающий неравномерность распределения скоростей в сечении трубы для уравнения Бернулли.
В учебнике Б.Е. Некрасова показано, что
. (2.16)
Поскольку , то dS=2prdr, подставляя в (2.16) и (2.8), после сокращения получим:
. (2.17)
В заключение следует отметить, что если жидкость из резервуара входит в трубу, постоянного диаметра и движется в ней ламинарным потоком, то формирование параболического профиля скоростей осуществляется постепенно, на некотором начальном участке (рисунок 2.7).
Полученные выше соотношения справедливы лишь на участке, где . Определение потерь напора на участке
осуществляется по тем не формулам, но с поправочным коэффициентом
:
, (2.18)
где определяется по графику (рисунок 2.8).
Следует отметить, что длина начального участка относительно невелика по сравнению с длиной трубопровода, и поэтому в расчетах иногда считают, что характеристика течения та же, что и после переходного участка, то есть считают .
Ламинарное течение
Ламинарное течение (от лат. lamina — пластинка) — упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re. Для каждого вида течения существует такое число RеКр, наз. нижним критич. числом Рейнольдса, что при любом Re Rекр, принимая особые меры для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение .Теоретически Л. т. изучаются с помощью Навье — Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.
Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения RеКр2200, где Re=
(
— средняя по расходу скорость жидкости, d — диаметр трубы,
— кинематич. коэф. вязкости,
— динамич. коэф. вязкости,
— плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды (
=10 -6 м 2 /с при 20° С) устойчивое Л. т. с
=1 м/с возможно лишь в трубках диаметром не более 2,2 мм.
При Л. т. в неограниченно длинной трубе скорость в любом сечении трубы изменяется по закону —
(1 — —r 2 /а 2 ), где а — радиус трубы, r — расстояние от оси,
— осевая (численно максимальная) скорость течения; соответствующий параболич. профиль скоростей показан на рис. а. Напряжение трения изменяется вдоль радиуса по линейному закону
где
=
— напряжение трения на стенке трубы. Для преодоления сил вязкого трения в трубе при равномерном движении должен иметь место продольный перепад давления, выражаемый обычно равенством P1-P2
где p1 и р2 — давления в к—н. двух поперечных сечениях, находящихся на расстоянии l друг от друга,
— коэф. сопротивления, зависящий от
для Л. т.
. Секундный расход жидкости в трубе при Л. т. определяет Пуазейля закон. В трубах конечной длины описанное Л. т. устанавливается не сразу и в начале трубы имеется т. н. входной участок, на к-ром профиль скоростей постепенно преобразуется в параболический. Приближённо длина входного участка
Распределение скоростей по сечению трубы: а — при ламинарном течении; б — при турбулентном течении.
Когда при течение становится турбулентным, существенно изменяются структура потока, профиль скоростей (рис., 6)и закон сопротивления, т. е. зависимость
от Re (см. Гидродинамическое сопротивление).
Кроме труб Л. т. имеет место в слое смазки в подшипниках, вблизи поверхности тел, обтекаемых маловязкой жидкостью (см. Пограничный слой ),при медленном обтекании тел малых размеров очень вязкой жидкостью (см., в частности, Стокса формула). Теория Л. т. применяется также в вискозиметрии, при изучении теплообмена в движущейся вязкой жидкости, при изучении движения капель и пузырьков в жидкой среде, при рассмотрении течений в тонких плёнках жидкости и при решении ряда др. задач физики и физ. химии.