Техника безопасности системы солнечного теплоснабжения - Домашний мастер Dach-Master.ru
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Техника безопасности системы солнечного теплоснабжения

Современные системы солнечного теплоснабжения

Доктор технических наук Б.И.Казанджан
Московский Энергетический Институт
(технический университет), Россия
Журнал Энергия, №12, 2005.

1. Введение.

Основными причинами, побудившими человечество заняться широкомасштабным промышленным освоением возобновляемых источников энергии являются:
-климатические изменения обусловленные увеличением содержания СО2 в атмосфере;
-сильная зависимость многих развитых стран, особенно европейских, от импорта топлива;
-ограниченность запасов органического топлива на Земле.
Недавнее подписание Киотского протокола большинством развитых стран мира поставило на повестку дня ускоренное развитие технологий способствующих сокращению выбросов СО2 в окружающую среду. Стимулом для развития этих технологий является не только осознание угрозы изменения климата и связанных с этим экономических потерь, но и тот факт, что квоты на выброс парниковых газов стали товаром, имеющим вполне реальную стоимость. Одной из технологий, позволяющей снизить расход органического топлива и уменьшить выбросы СО2, является производство низкопотенциального тепла для систем горячего водоснабжения, отопления, кондиционирования воздуха, технологических и иных нужд за счет солнечной энергии. В настоящее время более 40% первичной энергии расходуемой человечеством приходится на покрытие именно этих потребностей, и именно в этом секторе технологии использования солнечной энергии являются наиболее зрелыми и экономически приемлемыми для широкого практического использования. Для многих стран использование солнечных систем теплоснабжения — это еще и способ уменьшить зависимость экономики от импорта ископаемых топлив. Эта задача особенно актуальна для стран Европейского Союза, экономика которого уже сейчас на 50% зависит от импорта ископаемых энергоресурсов, а до 2020 года эта зависимость может возрасти до 70%, что является угрозой экономической независимости этого региона

2.Масштабы использования солнечных систем теплоснабжения

О масштабах современного использования солнечной энергии для нужд теплоснабжения свидетельствуют следующие статистические данные [1,2].
Общая площадь солнечных коллекторов установленных в странах ЕС к концу 2004 года достигла 13960000 м2, а в мире превысила 150000000 м2. Ежегодный прирост площади солнечных коллекторов в Европе в среднем составляет 12% , а в отдельных странах достигает уровня 20-30% и более. По количеству коллекторов на тысячу жителей населения мировым лидером является Кипр, где 90% домов оборудованы солнечными установками (на тысячу жителей здесь приходится 615,7 м2 солнечных коллекторов), за ним следуют Израиль, Греция и Австрия. Абсолютным лидером по площади установленных коллекторов в Европе является Германия — 47%, далее следуют Греция — 14%, Австрия — 12%, Испания — 6%, Италия — 4%, Франция — 3%. Европейские страны являются бесспорными лидерами в разработке новых технологий систем солнечного теплоснабжения, однако сильно уступают Китаю в объемах ввода в эксплуатацию новых солнечных установок. Статистические данные по увеличению количества вводимых в эксплуатацию солнечных коллекторов в мире по итогам 2004 года дают следующее распределение: Китай — 78%, Европа — 9%, Турция и Израиль — 8%, остальные страны — 5%.
По экспертной оценке ESTIF (Европейская Федерация промышленности солнечных тепловых установок) технико-экономический потенциал по использованию солнечных коллекторов в системах теплоснабжения только в странах ЕС составляет более 1,4 млрд.м2 способных производить более 680 000 ГВтч тепловой энергии в год. Планы на ближайшую перспективу предусматривают установку в этом регионе 100 000000 м2 коллекторов к 2010 году.

3. Солнечный коллектор — ключевой элемент солнечной системы теплоснабжения

Солнечный коллектор является основным компонентом любой солнечной системы теплоснабжения. Именно в нем происходит преобразование солнечной энергии в тепло. От его технического совершенства и стоимости зависит эффективность работы всей системы солнечного теплоснабжения и ее экономические показатели.
В системах теплоснабжения используются в основном два типа солнечных коллекторов: плоский и вакуумный.

Плоский солнечный коллектор состоит из корпуса, прозрачного ограждения, абсорбера и тепловой изоляции (фиг.1).

Фиг. 1 Типичная конструкция плоского солнечного коллектора [3]

Корпус является основной несущей конструкцией,.прозрачное ограждение пропускает солнечную радиацию внутрь коллектора, защищает абсорбер от воздейсквия внешней среды и уменьшает тепловые потери с лицевой стороны коллектора. Абсорбер поглощает солнечную радиацию и по трубкам соедененным с его теплоприемной поверхностью передает тепло теплоносителю. Тепловая изоляция уменьшает тепловые потери с тыльной и боковой поверхностей коллектора.
Теплоприемная поверхность абсорбера имеет селективное покрытие, имеющее высокий коэффициент поглощения в видимой и ближней инфракрасной области солнечного спектра и низкий коэффициент излучения в области спектра соответствующего рабочим температурам коллектора. У лучших современных коллекторов коэффициет поглощения находитвя в пределах 94-95%, коэффициет излучения 3-8%, а кпд в области рабочих температур типичных для систем теплоснабжения превышает 50% Неселективное черное покрытие абсорбера в современных коллекторах используется редко из-за высоких потерь на излучение. На рис 2 показаны примеры современных плоских коллекторов.

В вакуумных коллекторах (рис 3) каждый элемент абсорбера помещается в отдельную стеклянную трубу, внутри которой создается вакуум, благодаря чему потери тепла за счет конвекции и теплопроводности воздуха подавяются практически полностью. Селективное покрытие на поверхности абсорбера позволяет минимизировать потери на излучение. В результате к.п.д вакуумного коллектора получается существенно выше чем у плоского коллектора, на и стоимость его заначительно выше.

аб

Рис 2 Плоские солнечные коллектры

а) фирма Вагнер, б) фирма Ферон

а б

Рис 3 Вакуумный коллектор фирмы Виссман
а) общий вид, б) монтажная схема

3. Тепловые схемы солнечных систем теплоснабжения

В мировой практике наиболее широко распространены малые системы солнечного теплоснабжения. Как правило, такие системы включают в себя солнечные коллекторы общей площадью 2-8м2, бак аккумулятор, емкость которого определяется площадью используемых коллекторов, циркуляционный насос или насосы (в зависимости от типа тепловой схемы) и другое вспомогательное оборудование. В небольших системах, циркуляция теплоносителя между коллектором и баком-аккумулятором может осуществяться и без насоса, за счет естественной конвекции (термосифонный принцип). В этом случае бак-аккумулятор должен располагаться выше коллектора. Простейшим типом таких установок является коллектор, спаренный с баком аккумулятором, расположенным на верхнем торце коллектора (рис.4). Системы такого типа используются обычно для нужд горячего водоснабжения в небольших односемейных домах коттеджного типа.

Рис.4 Термосифонная солнечная система теплоснабжения.

На Рис. 5 показан пример активной системы большего размера, в которой бак аккумулятор расположен ниже коллекторов и циркуляция теплоносителя осуществляется с помощью насоса. Такие системы используются для нужд и горячего водоснабжения и отопления. Как правило, в активных системах, участвующих в покрытии части нагрузки отопления, предусматривается дублирующий источник тепла, использующий электроэнергию или газ.

Рис 5 Тепловая схема активной солнечной системы горячего водоснабжения и отопления [3]

Сравнительно новым явлением в практике использования солнечного теплоснабжения являются крупные системы способные обеспечить нужды горячего водоснабжения и отопления многоквартирных домов или целых жилых кварталов. В таких системах используется либо суточное, либо сезонное аккумулирование тепла.
Суточное аккумулирование предполагает возможность работы системы с использованием накопленного тепла в течение нескольких суток, сезонное — в течение нескольких месяцев.
Для сезонного аккумулирования тепла используют большие подземные резервуары, наполненные водой, в которые сбрасываются все излишки тепла, получаемого от коллекторов в течение лета. Другим вариантом сезонного аккумулирования является прогрев грунта с помощью скважин с трубами, по которым циркулирует горячая вода, поступающая от коллекторов.

В таблице 1. приведены основные параметры крупных солнечных систем с суточным и сезонным аккумулированием тепла в сравнении с малой солнечной системой для односемейного дома.

Системы солнечного теплоснабжения;

Классификация и основные элементы гелиосистем

Системами солнечного теплоснабжения называются системы, использующие в качестве источника тепловой энергии солнечную радиацию. Их характерным отличием от других систем низкотемпературного отопления является применение специального элемента – гелиоприемника, предназначенного для улавливания солнечной радиации и преобразования ее в тепловую энергию.

По способу использования солнечной радиации системы солнечного низкотемпературного отопления подразделяют на пассивные и активные.

Пассивныминазываются системы солнечного отопления, в которых в качестве элемента, воспринимающего солнечную радиацию и преобразующего ее в теплоту, служат само здание или его отдельные ограждения (здание-коллектор, стена-коллектор, кровля-коллектор и т. п. (рис. 3.4)).

Рис. 3.4. Пассивная низкотемпературная система солнечного отопления “стена-коллектор”: 1 – солнечные лучи; 2 – лучепрозрачный экран; 3 – воздушная заслонка; 4 – нагретый воздух; 5 – охлажденный воздух из помещения; 6 – собственное длинноволновое тепловое излучение массива стены; 7 – черная лучевоспринимающая поверхность стены; 8 – жалюзи.

Активныминазываются системы солнечного низкотемпературного отопления, в которых гелиоприемник является самостоятельным отдельным устройством, не относящимся к зданию. Активные гелиосистемы могут быть подразделены:

‑ по назначению (системы горячего водоснабжения, отопления, комбинированные системы для целей теплохолодоснабжения);

‑ по виду используемого теплоносителя (жидкостные – вода, антифриз и воздушные);

‑ по продолжительности работы (круглогодичные, сезонные);

‑ по техническому решению схем (одно-, двух-, многоконтурные).

Воздух является широко распространенным незамерзающим во всем диапазоне рабочих параметров теплоносителем. При применении его в качестве теплоносителя возможно совмещение систем отопления с системой вентиляции. Однако воздух – малотеплоемкий теплоноситель, что ведет к увеличению расхода металла на устройство систем воздушного отопления по сравнению с водяными системами.

Вода является теплоемким и широкодоступным теплоносителем. Однако при температурах ниже 0°С в нее необходимо добавлять незамерзающие жидкости. Кроме того, нужно учитывать, что вода, насыщенная кислородом, вызывает коррозию трубопроводов и аппаратов. Но расход металла в водяных гелиосистемах значительно ниже, что в большой степени способствует более широкому их применению.

Сезонные гелиосистемы горячего водоснабжения обычно одноконтурные и функционируют в летние и переходные месяцы, в периоды с положительной температурой наружного воздуха. Они могут иметь дополнительный источник теплоты или обходиться без него в зависимости от назначения обслуживаемого объекта и условий эксплуатации.

Гелиосистемы отопления зданий обычно двухконтурные или чаще всего многоконтурные, причем для разных контуров могут быть применены различные теплоносители (например, в гелиоконтуре – водные растворы незамерзающих жидкостей, в промежуточных контурах – вода, а в контуре потребителя – воздух).

Комбинированные гелиосистемы круглогодичного действия для целей теплохолодоснабжения зданий многоконтурные и включают дополнительный источник теплоты в виде традиционного теплогенератора, работающего на органическом топливе, или трансформатора теплоты.

Принципиальная схема системы солнечного теплоснабжения приведена на рис.3.5. Она включает три контура циркуляции:

‑ первый контур, состоящий из солнечных коллекторов 1, циркуляционного насоса 8 и жидкостного теплообменника 3;

‑ второй контур, состоящий из бака-аккумулятора 2, циркуляционного насоса 8 и теплообменника 3;

‑ третий контур, состоящий из бака-аккумулятора 2, циркуляционного насоса 8, водовоздушного теплообменника (калорифера) 5.

Рис. 3.5. Принципиальная схема системы солнечного теплоснабжения: 1 – солнечный коллектор; 2 – бак-аккумулятор; 3 – теплообменник; 4 – здание; 5 – калорифер; 6 – дублер системы отопления; 7 – дублер системы горячего водоснабжения; 8 – циркуляционный насос; 9 – вентилятор.

Функционирует система солнечного теплоснабжения следующим образом. Теплоноситель (антифриз) теплоприемного контура, нагреваясь в солнечных коллекторах 1, поступает в теплообменник 3, где теплота антифриза передается воде, циркулирующей в межтрубном пространстве теплообменника 3 под действием насоса 8 второго контура. Нагретая вода поступает в бак-аккумулятор 2. Из бака-аккумулятора вода забирается насосом горячего водоснабжения 8, доводится при необходимости до требуемой температуры в дублере 7 и поступает в систему горячего водоснабжения здания. Подпитка бака-аккумулятора осуществляется из водопровода.

Читать еще:  Как сделать комнату над подъездом теплой

Для отопления вода из бака-аккумулятора 2 подается насосом третьего контура 8 в калорифер 5, через который с помощью вентилятора 9 пропускается воздух и, нагревшись, поступает в здание 4. В случае отсутствия солнечной радиации или нехватки тепловой энергии, вырабатываемой солнечными коллекторами, в работу включается дублер 6.

Выбор и компоновка элементов системы солнечного теплоснабжения в каждом конкретном случае определяются климатическими факторами, назначением объекта, режимом теплопотребления, экономическими показателями.

Концентрирующие гелиоприемникипредставляют собой сферические или параболические зеркала (рис. 3.6), выполненные из полированного металла, в фокус которых помещают тепловоспринимающий элемент (солнечный котел), через который циркулирует теплоноситель. В качестве теплоносителя используют воду или незамерзающие жидкости. При использовании в качестве теплоносителя воды в ночные часы и в холодный период систему обязательно опорожняют для предотвращения ее замерзания.

Для обеспечения высокой эффективности процесса улавливания и преобразования солнечной радиации концентрирующий гелиоприемник должен быть постоянно направлен строго на Солнце. С этой целью гелиоприемник снабжают системой слежения, включающей датчик направления на Солнце, электронный блок преобразования сигналов, электродвигатель с редуктором для поворота конструкции гелиоприемника в двух плоскостях.

Преимуществом систем с концентрирующими гелиоприемниками является способность выработки теплоты с относительно высокой температурой (до 100 °С) и даже пара. К недостаткам следует отнести высокую стоимость конструкции; необходимость постоянной очистки отражающих поверхностей от пыли; работу только в светлое время суток, а следовательно, потребность в аккумуляторах большого объема; большие энергозатраты на привод системы слежения за ходом Солнца, соизмеримые с вырабатываемой энергией. Эти недостатки сдерживают широкое применение активных низкотемпературных систем солнечного отопления с концентрирующими гелиоприемниками. В последнее время наиболее часто для солнечных низкотемпературных систем отопления применяют плоские гелиоприемники.

Плоские солнечные коллекторы

Плоский солнечный коллектор– устройство с поглощающей панелью плоской конфигурации и плоской прозрачной изоляцией для поглощения энергии солнечного излучения и преобразования ее в тепловую.

Плоские солнечные коллекторы (рис. 3.7) состоят из стеклянного или пластикового покрытия (одинарного, двойного, тройного), тепловоспринимающей панели, окрашенной со стороны, обращенной к солнцу, в черный цвет, изоляции на обратной стороне и корпуса (металлического, пластикового, стеклянного, деревянного).

В качестве тепловоспринимающей панели можно использовать любой металлический или пластмассовый лист с каналами для теплоносителя. Изготавливаются тепловоспринимающие панели из алюминия или стали двух типов: лист-труба и штампованные панели (труба в листе). Пластмассовые панели из-за недолговечности и быстрого старения под действием солнечных лучей, а также из-за малой теплопроводности не находят широкого применения.

Рис. 3.6 Концентрирующие гелиоприемники: а – параболический концентратор; б – параболоцилиндрический концентратор; 1 – солнечные лучи; 2 – тепловоспринимающий элемент (солнечный коллектор); 3 – зеркало; 4 – механизм привода системы слежения; 5 – трубопроводы, подводящие и отводящие теплоноситель.

Рис. 3.7. Плоский солнечный коллектор: 1 – солнечные лучи; 2 – остекление; 3 – корпус; 4 – тепловоспринимающая поверхность; 5 – теплоизоляция; 6 – уплотнитель; 7 – собственное длинноволновое излучение тепловоспринимающей пластины.

Под действием солнечной радиации тепловоспринимающие панели разогреваются до температур 70-80 °С, превышающих температуру окружающей среды, что ведет к возрастанию конвективной теплоотдачи панели в окружающую среду и ее собственного излучения на небосвод. Для достижения более высоких температур теплоносителя поверхность пластины покрывают спектрально-селективными слоями, активно поглощающими коротковолновое излучение солнца и снижающими ее собственное тепловое излучение в длинноволновой части спектра. Такие конструкции на основе “черного никеля”, “черного хрома”, окиси меди на алюминии, окиси меди на меди и другие дорогостоящи (их стоимость часто соизмерима со стоимостью самой тепловоспринимающей панели). Другим способом улучшения характеристик плоских коллекторов является создание вакуума между тепловоспринимающей панелью и прозрачной изоляцией для уменьшения тепловых потерь (солнечные коллекторы четвертого поколения).

Опыт эксплуатации солнечных установок на основе солнечных коллекторов выявил ряд существенных недостатков подобных систем. Прежде всего это высокая стоимость коллекторов. Увеличение эффективности их работы за счет селективных покрытий, повышение прозрачности остекления, вакуумирования, а также устройства системы охлаждения оказываются экономически нерентабельными. Существенным недостатком является необходимость частой очистки стекол от пыли, что практически исключает применение коллектора в промышленных районах. При длительной эксплуатации солнечных коллекторов, особенно в зимних условиях, наблюдается частый выход их из строя из-за неравномерности расширения освещенных и затемненных участков стекла за счет нарушения целостности остекления. Отмечается также большой процент выхода из строя коллекторов при транспортировке и монтаже. Значительным недостатком работы систем с коллекторами является также неравномерность загрузки в течение года и суток. Опыт эксплуатации коллекторов в условиях Европы и европейской части России при высокой доле диффузной радиации (до 50%) показал невозможность создания круглогодичной автономной системы горячего водоснабжения и отопления. Все гелиосистемы с солнечными коллекторами в средних широтах требуют устройства больших по объему баков-аккумуляторов и включения в систему дополнительного источника энергии, что снижает экономический эффект от их применения. В связи с этим наиболее целесообразно их использование в районах с высокой средней интенсивностью солнечной радиации (не ниже 300 Вт/м 2 ).

Системы теплоснабжения. Классификация систем теплоснабжения

Различают два вида теплоснабжения – централизованное и децентрализованное. При децентрализованном теплоснабжении источник и потребитель тепла находятся близко друг от друга. Тепловая сеть отсутствует. Децентрализованное теплоснабжение разделяют на местное (теплоснабжение от местной котельной) и индивидуальное (печное, теплоснабжение от котлов в квартирах).

В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

1. групповое теплоснабжение (ТС) группы зданий;

2. районное – ТС городского района;

3. городское – ТС города;

4. межгородское – ТС нескольких городов.

Процесс ЦТС состоит из трех операций – подготовка теплоносителя (ТН), транспорт ТН и использование ТН.

Подготовка ТН осуществляется на теплоприготовительных установках ТЭЦ и котельных. Транспорт ТН осуществляется по тепловым сетям. Использование ТН осуществляется на теплоиспользующих установках потребителей.

Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла:

— Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование;

— Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на:

— низкопотенциальное, с температурой до 150 0 С;

— среднепотенциальное, с температурой от 150 0 С до 400 0 С;

— высокопотенциальное, с температурой выше 400 0 С.

Коммунально-бытовая нагрузка относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0 С (в прямом трубопроводе), минимальная – 70 0 С (в обратном). Для покрытия технологической нагрузки как правило применяется водяной пар с давлением до 1,4 МПа.

В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Весь комплекс оборудования ис­точника теплоснабжения, тепловых сетей и абонентских установок на­зывается системой централи­зованного теплоснабже­ния.

Системы теплоснабжения клас­сифицируются по типу источника теплоты (или способу приготовле­ния теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопрово­дов тепловой сети, способу обеспе­чения потребителей, степени цент­рализации.

По типу источника теплоты раз­личают три вида теплоснабжения:

— централизованное теплоснабже­ние от ТЭЦ, называемое тепло­фикацией;

— централизованное теплоснабже­ние от районных или промышлен­ных котельных;

— децентрализованное теплоснаб­жение от местных котельных или индивидуальных отопительных аг­регатов.

По сравнению с централизован­ным теплоснабжением от котель­ных теплофикация имеет ряд пре­имуществ, которые выражаются в экономии топлива за счет комбини­рованной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использова­ния местного низкосортного топли­ва, сжигание которого в котельных затруднительно; в улучшении сани­тарных условий и чистоты воздуш­ного бассейна городов и промыш­ленных районов благодаря концент­рации сжигания топлива в неболь­шом количестве пунктов, размещен­ных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использова­нию современных методов очистки дымовых газов от вредных при­месей.

По роду теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основ­ном на промышленных предприя­тиях, а водяные системы применя­ются для теплоснабжения жилищ­но-коммунального хозяйства и не­которых производственных потреби­телей. Объясняется это рядом пре­имуществ воды как теплоносителя по сравнению с паром: возмож­ностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потеря­ми при транспортировке и большей дальностью теплоснабжения, отсут­ствием потерь конденсата греюще­го пара, большей комбинированной выработкой энергии на ТЭЦ, повы­шенной аккумулирующей способ­ностью.

По способу подачи воды на го­рячее водоснабжение водяные си­стемы делятся на закрытые и открытые.

В закрытых системах се­тевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, на­гретая в специальных водоводяных подогревателях за счет теплоты се­тевой воды.

В открытых системах се­тевая вода непосредственно посту­пает в местные установки горя­чего водоснабжения. При этом не требуются дополнительные тепло­обменники, что значительно упро­щает и удешевляет устройство або­нентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5—1 % до 20— 40 % общего расхода воды в систе­ме) и состав воды, подаваемой по­требителям, ухудшается из-за при­сутствия в ней продуктов коррозии и отсутствия биологической обра­ботки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечи­вает стабильное качество горячей воды, поступающей в установки го­рячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки го­рячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закры­тых систем являются усложнение и удорожание оборудования и экс­плуатации абонентских вводов из-за установки водо-водяных подо­гревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключают­ся в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых систе­мах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закры­той системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых систе­мах поступает деаэрированная во­да, поэтому они меньше подвер­жены коррозии и более долго­вечны.

Недостатками открытых систем являются: необходимость устройст­ва на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина под­питки не характеризует плотность системы); нестабильность гидравли­ческого режима сети.

Читать еще:  Котел газ дизель универсальный китурами

По числу трубопроводов разли­чают одно-, двух- и многотрубные системы. Причем для открытой си­стемы минимальное число трубо­проводов — один, а для закры­той— два. Самой простой и перс­пективной для транспортировки теплоты на большие расстояния яв­ляется однотрубная открытая си­стема теплоснабжения. Однако об­ласть применения таких систем ог­раничена в связи с тем, что ее реа­лизация возможна лишь при усло­вии равенства расхода воды, необ­ходимого для удовлетворения отопительно-вентиляционной нагруз­ки, расходу веды для горячего водоснабжения потребителей дан­ного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значи­тельно меньше (в 3—4 раза) рас­хода сетевой воды на отопление и вентиляцию, поэтому в теплоснаб­жении городов преимущественное распространение получили двух­трубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потре­бителей теплотой различают одно­
ступенчатые и многоступенчатые системы теплоснабжения. В одно­
ступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно. Узлы присоединения потребителей к сети
называются абонентскими вводами или местными теп­ловыми пунктами (МТП). На абонентском вводе каждого здания устанавливаются подогреватели горячего водоснабжения, элеваторы, насосы, контрольно-измерительные приборы и регулирующая армату­ра для изменения параметров теп­лоносителя в местных системах по­требителей.

В многоступенчатых системах между источником теплоты и по­требителями размещаются цент­ральные тепловые пункты или под­станции (ЦТП), в которых пара­метры теплоносителя изменяются в зависимости от расходования теп­лоты местными потребителями. На ЦТП размещаются центральная по­догревательная установка горячего водоснабжения, центральная смеси­тельная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измеритель­ные приборы. Применение много­ступенчатых систем с ЦТП позво­ляет снизить начальные затраты на сооружение подогревательной ус­тановки горячего водоснабжения, насосных установок и авторегулирующйх устройств благодаря уве­личению их единичной мощности и сокращению числа элементов обо­рудования.

Оптимальная расчетная произ­водительность ЦТП зависит от планировки района, режима работы потребителей и определяется на ос­нове технико-экономических расче­тов.

По степени централизации теп­лоснабжение можно разделить на групповое — теплоснабжение группы зданий, районные – теплоснабжение нескольких групп зданий, городское – теплоснабжение нескольких районов, межгородское – теплоснабжение нескольких городов.

Устройство и конструкции тепловых сетей.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки; изоляционная конструкция, воспринимающая вес трубопровода и усилия, возникающая при его эксплуатации.

Трубы являются ответственными элементами трубопроводов и должны отвечать следующим требованием:

— достаточная прочность и герметичность при максимальных значениях давления и температуры теплоносителя,

— низкий коэффициент температурных деформации,

— обеспечивающий небольшие термические напряжение при переменном тепловом режиме тепловой сети,

— малая шероховатость внутренней поверхности,

— высокая термическая сопротивление стенок трубы,

— способствующее сохранению теплоты и температуры теплоносителя,

— неизменность свойств материала при длительном воздействий высоких температур и давлений, простота монтажа,

— надежность соединения труб и др.

Имеющейся стальные трубы не удовлетворяют в полной мере всем предъявлемым требованиям, однако их механические свойства, простота, надежность и герметичность соединений (сваркой) обеспечили им преимущественное применение в тепловых сетях.

Трубы для тепловых сетей изготавливаются в основном из сталей марок Ст2сп, Ст3сп, 10, 20, 10Г2С1, 15ГС, 16ГС.

В тепловых сетях применяются бесшовные горячекатаные и электросварные. Бесшовные горячекатаные трубы выпускаются с наружными диаметрами 32 — 426мм. Бесшовные горячекатаные электросварные трубы используется при всех способах прокладки сетей. Электросварные трубы используются при всех способах прокладки сетей. Электросварные со спиральным швом рекомендуются к использованию при канальных и надземных прокладках сетей .

Опоры. При сооружений тепловых сетей применяются опоры двух типов: свободные и неподвижные. Свободные опоры воспринимают вес теплопровода и обеспечивают его свободное перемещение при температурных деформациях. Неподвижные опоры предназначены для закрепления трубопровода в характерных точках сети и воспринимают усилия, возникающие в месте фиксации как в радиальном , так и в осевом направлениях под действием веса , температурных деформаций и внутреннего давления.

Компенсаторы. Компенсация температурных деформации в трубопроводах производится специальными устройствами, называемыми компенсаторами. По принципу действия они разделяются на две группы:

Компенсаторы радиальные или гибкие, воспринимающие удлинения теплопровода изгибом или кручением криволинейных участков труб или изгибом специальных эластичных вставок различной формы;

Компенсаторы осевые, в которых удлинение воспринимаются телескопическим перемещением труб или сжатием пружинных вставок.

Наиболее широкое применение в практике имеют гибкие компенсаторы различной конфигурации, выполненные из самого трубопровода (П – и –S-образные, лирообразные со складками и без них и т.д.). Простота устройства, надежность, отсутствия необходимости в обслуживании, разгруженность неподвижных опор – достоинство этих компенсаторов.

К недостаткам гибких компенсаторов относятся: повышенное гидравлическое сопротивление, увеличенный расход труб, поперечное перемещение деформируемых участках, требующее увеличение ширины непроходных каналов и затрудняющее применение засыпных изоляций, бесканальных трубопроводов, а так же большие габариты, затрудняющие их применение в городах при насыщенности трассы городскими подземными коммуникациями.

Осевые компенсаторы выполняются скользящего типа (сальниковые) и упругими (линзовые компенсаторы).

Сальниковый компенсатор изготавливается из стандартных труб и состоит из корпуса, стакана и уплотнение. При удлинений трубопровода стакан вдвигается в полость корпуса. Герметичность скользящего соединения корпуса и стакана создается сальниковой набивкой, которая выполняется из прографиченного асбестового шнура, пропитанного маслом. Со временем набивка истирается и теряет упругость, поэтому требуется периодическая подтяжка сальника и замена набивки. От этого недостатка свободны линзовые компенсаторы, изготавливаемые из листовой стали. Линзовые компенсаторы сварного типа находят основное применение на трубопроводах низкого давления (до 0,4-0,5 МПа).

Конструктивное выполнение элементов трубопровода зависит так же от способа его прокладки, который выбирается на основании технико-экономического сравнения возможных вариантов.

6.2.3 Основные принципы теплотехнического расчета систем солнечного теплоснабжения

Методы расчета солнечных систем теплоснабжения отличаются различной степенью сложности и надежности. В инженерной практике часто используются приближенные методы расчета, например метод, изложенный в [7].

Цель расчета системы солнечного теплоснабжения состоит в определении ее теплопроизводительности, площади коллектора, характеристик теплового аккумулятора, расхода теплоносителя в коллекторе и его ориентации.

Несмотря на многообразие конструкции солнечных коллекторов, общими элементами каждого из них являются (см. рис. 6.6) прозрачное покрытие, тепловоспринимающая панель, теплоизоляция, корпус приемника.

Прозрачное покрытие характеризуется пропускательной способностью Z), выражающей отношение потока пропущенного излучения к потоку, падающему в плоскости приемника. В табл. 6.1 приведены усредненные значения пропускательной способности стеклянных покрытий в зависимости от угла (3 падения излучения по отношению к горизонтальной поверхности.

Значения пропускательной способности стеклянного покрытия для диффузною и прямою излучения

Для диффузного излучения

Для прямого излучения при углах падения р, град.

Тепловоспринимающее покрытие коллектора оценивается поглощательной способностью относительно солнечного излучения (А) и степенью черноты (е) относительно длинноволнового излучения. Для селективных покрытий А = 0,80. 0,93, е = 0,09. 0,20.

Эффективность солнечного коллектора по восприятию солнечной радиации оценивается приведенной поглощательной способностью. Эта характеристика представляет отношение

где ?пад — плотность потока энергии, падающей на плоскость коллектора, Вт; Е„от — плотность поглощенной энергии, Вт.

При полной оценке оптических свойств солнечного коллектора учитывают запыленность прозрачного покрытия и затенение панели боковыми стенками корпуса. Согласно рекомендациям 126] коэффициент запыленности к> следует принимать в пределах 0,85. 0,90, а коэффициент затенения кзат — в пределах 0,95. 0,98.

С учетом указанных выше факторов предельные значения приведенной поглощательной способности для покрытий из оконного стекла составляют 0,65. 0,75 для однослойного покрытия и 0,56. 0,65 для двухслойного.

Плотность потока суммарной солнечной энергии, поглощенной солнечным коллектором, наклоненным под углом (3 к горизонту, определяется выражением

где Es, Ed — плотности потоков соответственно прямой и рассеянной энергии, падающих на горизонтальную поверхность, Вт; ка — коэффициент пересчета плотности потока прямой энергии излучения с горизонтальной поверхности на наклонную, зависящий от движения Солнца и ориентации поверхности гелиоприемника; R — отражательная способность прилегающей поверхности Земли, изменяющаяся в зависимости от наличия и устойчивости снежного покрова от 0,2 до 0,7; индексы sw d для DA соответствуют прямой и рассеянной энергии излучения.

Тепловые потери солнечного коллектора оцениваются величиной ос. равной 7,5. 8,0 Вт/(м 2 • °С) при однослойном и 4. 5 Вг/(м 2 • °С) при двухслойном стеклянном покрытии.

Для расчета теплопроизводительности солнечных коллекторов предложен ряд зависимостей, из которых чаще всего используется уравнение Уиллера:

где Q — теплопроизводительность коллектора, Вт; Еп — площадь тепловоспринимающей поверхности, м 2 ; g — удельный расход теплоносителя, кг/(ч • м 2 ); т)’ — эффективность приемника, зависящая от расстояния между каналами панели, его материала и интенсивности теплообмена в каналах; для обычных конструкций т|’ = 0,96. 0,98; tH, taji температуры соответственно наружного воздуха и теплоносителя на входе в коллектор, °С.

На основании уравнения (6.2) построены графики зависимости удельной теплопроизводительности солнечного коллектора от разности температур теплоносителя на входе в него и наружного воздуха при различных расходах теплоносителя и плотности потока поглощенного излучения Е (рис. 6.12).

Рис. 6.12. Графики зависимости удельной теплопроизводительности гелиоприемника от разности температур сред на входе и удельного расхода теплоносителя

Из графиков следует, что при увеличении расхода теплоносителя теплопроизводительность гелиоприемника возрастает, стремясь к некоторому пределу. flpHg> 30. 50 кг/(ч • м 2 ) заметного приращения теплопроизводительности уже не происходит.

Теплотехническое совершенство солнечного коллектора оценивается коэффициентом тепловой эффективности г|с, равным отношению теплопроизводительности к количеству суммарного излучения, падающего на его поверхность за рассматриваемый промежуток времени:

В зависимости от интенсивности излучения, температуры наружного воздуха и нагреваемого теплоносителя мгновенные часовые значения т)с могут достигать 0,5. 0,6, а долгосрочные значения редко превышают 0,3. 0,5, причем ббльшие значения соответствуют более совершенным конструкциям коллекторов с селективными абсорберами и двухслойным остеклением.

Эффективность использования солнечного отопления за продолжительное время принято оценивать коэффициентом замещения отопительной нагрузки за определенный период (месяц или отопительный период):

где Qn ()01 — соответственно фактическая теплопроизводительность гелиосистемы и суммарная отопительная нагрузка за рассматриваемый период, Вт.

В [33] представлена методика предварительного расчета систем теплоснабжения с использованием солнечной энергии. Методика основана на зависимости коэффициента замещения |/ от безразмерного критерия © = Ек F/QH в следующем виде:

Здесь Ек — суммарный приход солнечной энергии на горизонтальную поверхность коллектора за расчетный период, ГДж/м 2 ; F — площадь коллектора, м 2 ; QH — тепловая нагрузка на систему теплоснабжения за расчетный период, ГДж.

На основании зависимости (6.4) построены графики, представленные на рис. 6.13. При построении этих зависимостей принята базовая система с плоским коллектором солнечной энергии и двухслойным остеклением, имеющим отношение а„ /г| =6,3 Вт/(м 2 • °С), оптимальный угол наклона к горизонту и южную ориентацию, а также удельный объем водяного аккумулятора теплоты 0,05 м 3 /м 2 . В случае применения коллекторов других типов расчет должен быть скорректирован.

Читать еще:  Современные решения для реконструкции старых систем отопления

Рис. 6.13. Графики для расчета солнечных водонагревательных установок (а) и гелиоустановок теплоснабжения (б)

Учитываемые характеристики солнечного коллектора — эффективный оптический показатель г| и тепловые потери ап, Вт/(м 2 • °С).

В качестве расчетного периода принимается один месяц для систем отопления и один год для систем горячего водоснабжения круглогодичного действия (или летний сезон для сезонных установок). Соответственно определяются количество солнечной энергии, поступающей на поверхность коллектора, и тепловая нагрузка QH для принятых к расчету периодов. Для гелиосистем отопления и горячего водоснабжения пользоваться данной графической зависимостью можно только на месячной основе. Коэффициент пересчета количества солнечной энергии с горизонтальной плоскости (табличные значения) на наклонную поверхность коллектора (?) можно ориентировочно принимать равным: для коллектора с оптимальным углом наклона — 1,4; для гелиосистем отопления (оптимальный угол наклона коллектора к горизонту ропт равен широте местности ф + 15°), — 1,05; для сезонных установок горячего водоснабжения (роит = ф — 15°) — 1,1, для систем круглогодичного действия рош = ф.

С помощью зависимостей, приведенных на рис. 6.13, можно решать две задачи:

  • 1) определение площади коллектора, обеспечивающей заданную степень замещения vj/;
  • 2) определение годового значения степени замещения |/,од при заданной площади поверхности коллектора F.

Последовательность решения второй задачи: для расчетного периода (год, сезон, месяц) определяют Qu и Ек, рассчитывают параметр 0 и по графику находят степень замещения i. Затем рассчитывают годовые (месячные) значения количества энергии Qr, вырабатываемой гелиоустановкой и дополнительным источником энергии (ДИЭ):(?Диэ =(1-у)С?н.

Площадь поверхности коллектора, м 2 , необходимая для обеспечения заданной степени замещения, определяется по формуле

При этом значение 0 определяют по графику, приведенному на рис. 6.13.

Пример 6.1. Выполнить ориентировочный расчет системы солнечного теплоснабжения для производства с потреблением нагретой воды Vr = 3,8 м 3 вдень. Место расположения объекта — г. Василевичи (Беларусь), находящийся на широте 50°. Годовой приход суммарной солнечной энергии на горизонтальную поверхность Е = 3882 МДжДм 2 • год). Площадь поверхности коллектора для гелиоустановки определить при коэффициенте замещения у = 0,5. Угол наклона коллектора к горизонту принять оптимальным и равным широте, а коэффициент пересчета интенсивности солнечной энергии с горизонтальной поверхности на наклонную ?=1,1.

Решение. Годовая тепловая нагрузка

Годовое поступление солнечной энергии на поверхность коллектора

По графику, приведенному на рис. 6.13, находим: 0 = 2,0.

Ориентировочная площадь поверхности коллектора

Необходимый объем аккумулятора теплоты для системы теплоснабжения Уж = 0,05 F =0,05 • 135 = 6,76 м 3 .

Пассивные солнечные системы теплоснабжения.

Опыт Китайской Народной Республики

Чжао Цзиньлин, канд. техн. наук, Даляньский политехнический ун-т (КНР), стажер кафедры промышленных теплоэнергетических систем,

А. Я. Шелгинский, доктор техн. наук, проф., науч. руководитель, МЭИ (ТУ), Москва

Особое значение при проектировании олимпийских объектов в Сочи имеет использование экологически чистых возобновляемых источников энергии и в первую очередь энергии солнечной радиации. В связи с этим будет интересен опыт разработки и внедрения пассивных солнечных систем теплоснабжения в жилых и общественных зданиях в провинции Ляонин (Китай), поскольку географическое расположение и климатические условия данной части Китая сопоставимы с аналогичными характеристиками Сочи.

Применение возобновляемых источников энергии (ВИЭ) для систем теплоснабжения является актуальным и весьма перспективным в настоящее время при условии грамотного подхода к данному вопросу, т. к. традиционные источники энергии (нефть, газ и т. п.) не безграничны. В связи с этим многие страны, включая КНР, переходят на использование экологически чистых возобновляемых источников энергии, одним из которых является теплота солнечного излучения.

Возможность эффективного использования теплоты солнечного излучения в Китайской Народной Республике зависит от региона, поскольку климатические условия в разных частях страны сильно отличаются: от умеренного континентального (запад и север) с жарким летом и суровой зимой, субтропического в центральных районах страны до тропического муссонного на южном побережье и островах, обуславливается географическим местонахождением территории, на которой находится объект (таблица).

В провинции Ляонин интенсивность солнечной радиации составляет от 5 000 до 5 850 МДж/м 2 в год (в Сочи – около 5 000 МДж/м 2 в год), что позволяет активно применять системы отопления и охлаждения зданий на основе использования энергии солнечной радиации. Такие системы, преобразующие теплоту солнечного излучения и наружного воздуха, можно разделить на активные и пассивные.

В пассивных системах солнечного теплоснабжения (ПССТ) используется естественная циркуляция нагретого воздуха (рис. 1), т. е. гравитационные силы.

В активных системах солнечного теплоснабжения (рис. 2) задействованы дополнительные источники энергии для обеспечения ее работы (например, электроэнергия). Теплота солнечного излучения поступает на солнечные коллекторы, где частично аккумулируется и передается промежуточному теплоносителю, который насосами транспортируется и распределяется по помещениям.

Пассивные солнечные системы теплоснабжения

Пример активной солнечной системы теплоснабжения

1 – солнечный коллектор;

Возможны системы с нулевым потреблением теплоты и холода, где соответствующие параметры воздуха в помещениях обеспечиваются без дополнительных энергозатрат за счет:

  • необходимой тепловой изоляции;
  • выбора конструкционных материалов здания с соответствующими теплохладоаккумулирующими свойствами;
  • использования в системе дополнительных теплохладоаккумуляторов с соответствующими характеристиками.

На рис. 3 представлена усовершенствованная схема работы пассивной системы теплоснабжения здания c элементами (шторы, клапаны), позволяющими более точно регулировать температуру воздуха внутри помещения. На южной стороне здания устанавливается так называемая стена Тромба, которая состоит из массивной стены (бетонной, кирпичной или каменной) и стеклянной перегородки, устанавливаемой на небольшом расстоянии от стены с внешней стороны. Наружная поверхность массивной стены окрашена в темный цвет. Через стеклянную перегородку нагревается массивная стена и воздух, находящийся между стеклянной перегородкой и массивной стеной. Нагретая массивная стена за счет излучения и конвективного теплообмена передает накопленную теплоту в помещение. Таким образом, в этой конструкции совмещаются функции коллектора и аккумулятора теплоты.

Схемы работы усовершенствованной пассивной солнечной системы теплоснабжения: а, б – зимой; в, г – летом

2– верхний клапан;

3– стеклянная перегородка;

5 – массивная стена;

6 – нижний клапан

Воздух, находящийся в прослойке между стеклянной перегородкой и стеной, в холодный период времени и в солнечный день используется в качестве теплоносителя для подачи теплоты в помещение. Для предотвращения теплооттоков в окружающую среду в холодный период времени в ночное время и избыточных теплопритоков в солнечные дни теплого периода времени используются шторы, которые значительно сокращают теплообмен между массивной стеной и внешней окружающей средой.

Шторы выполняются из нетканых материалов с серебристым покрытием. Для обеспечения необходимой циркуляции воздуха используются воздушные клапаны, которые расположены в верхней и нижней частях массивной стены. Автоматическое управление работой воздушных клапанов позволяет поддерживать необходимые теплопритоки или теплооттоки в обслуживаемом помещении.

Система пассивного солнечного теплоснабжения работает следующим образом:

1. В холодный период времени (отопление):

  • солнечный день – штора поднята, клапаны открыты (рис. 3а). Это приводит к нагреву массивной стены через стеклянную перегородку и нагреву воздуха, находящегося в прослойке между стеклянной перегородкой и стеной. Теплота поступает в помещение от нагретой стены и нагретого в прослойке воздуха, циркулирующего через прослойку и помещение под воздействием гравитационных сил, вызванных разностью плотностей воздуха при разных температурах (естественная циркуляция);
  • ночь, вечер или пасмурный день – штора опущена, клапаны закрыты (рис. 3б). Теплооттоки во внешнюю среду значительно сокращаются. Температура в помещении поддерживается за счет поступления теплоты от массивной стены, накопившей эту теплоту от солнечного излучения;

2. В теплый период времени (охлаждение):

  • солнечный день – штора опущена, нижние клапаны открыты, верхние – закрыты (рис. 3в). Штора предохраняет нагрев массивной стены от солнечного излучения. Наружный воздух поступает в помещение с затененной стороны дома и выходит через прослойку между стеклянной перегородкой и стеной в окружающую среду;
  • ночь, вечер или пасмурный день – штора поднята, нижние клапаны открыты, верхние – закрыты (рис. 3г). Наружный воздух поступает в помещение с противоположной стороны дома и выходит в окружающую среду через прослойку между стеклянной перегородкой и массивной стеной. Стена охлаждается в результате конвективного теплообмена с воздухом, проходящим через прослойку, и за счет оттока теплоты излучением в окружающую среду. Охлажденная стена в дневное время поддерживает необходимый температурный режим в помещении.

Для расчета систем пассивного солнечного отопления зданий разработаны математические модели нестационарного теплопереноса при естественной конвекции для обеспечения помещений необходимыми температурными условиями в зависимости от теплофизических свойств ограждающих конструкций, суточного изменения солнечного излучения и температуры наружного воздуха [1, 2].

Для определения достоверности и уточнения полученных результатов в Даляньском политехническом университете разработана, изготовлена и исследована экспериментальная модель жилого дома, расположенного в г. Далянь, с пассивными солнечными системами отопления. Стена Тромба размещается только на южном фасаде, с автоматическими воздушными клапанами и шторами (рис. 3, фото).

При проведении эксперимента использовались:

  • малая метеостанция;
  • приборы для измерения интенсивности солнечной радиации;
  • анемограф RHAT-301 для определения скорости воздуха в помещении;
  • термометрограф TR72-S и термопары для замеров температуры в помещении.

Экспериментальные исследования проводились в теплый, переходной и холодный периоды года при различных метеорологических условиях.

Алгоритм решения поставленной задачи представлен на рис. 4.

Алгоритм решения задачи по определению эффективности работы пассивной солнечной системы теплоснабжения

Результаты эксперимента подтвердили достоверность полученных расчетных соотношений и позволили скорректировать отдельные зависимости с учетом конкретных граничных условий.

В настоящее время в провинции Ляонин находится много жилых домов и школ, в которых используются пассивные солнечные системы отопления.

Анализ пассивных солнечных систем теплоснабжения показывает, что они являются достаточно перспективными в отдельных климатических регионах в сравнении с остальными системами по следующим причинам:

  • дешевизна;
  • простота обслуживания;
  • надежность.

К недостаткам пассивных солнечных систем отопления следует отнести то, что параметры воздуха внутри помещения могут отличаться от требуемых (расчетных) при изменении температуры наружного воздуха за пределами, принятыми в расчетах.

Для достижения хорошего энергосберегающего эффекта в системах теплохладоснабжения зданий с более точным поддержанием температурных условий в заданных пределах целесообразно комбинированное использование пассивных и активных солнечных систем теплохладоснабжения.

В связи с этим необходимы дальнейшие теоретические исследования и проведение экспериментальных работ на физических моделях с учетом ранее полученных результатов.

Литература

1. Zhao Jinling, Chen Bin, Liu Jingjun, Wang Yongxun Dynamic thermal performance simulation of an improved passive solar house with trombe wall ISES Solar word Congress, 2007, Beijing China, Vols 1-V: 2234–2237.

2. Zhao Jinling, Chen Bin, Chen Cuiying, Sun Yuanyuan Study on dynamic thermal response of the passive solar heating systems. Journal of Harbin Institute of Technology (New Series). 2007. Vol. 14: 352–355.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector